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SUBHARMONIC MOTIONS OF THE OSCILLATOR 
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Abstract: The excited one degree of freedom mechanical system with soft impacts, 
characterised by triangle hysteresis loop, is investigated using numerical simulation. Small 
viscous damping is assumed. Phenomena of subharmonic motions are explained by regions 
of their existence and stability in plane of dimensionless excitation frequency and static 
clearance. Bifurcation diagrams are evaluated during quasistationary changes of 
frequency by constant clearance. 
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1. Introduction 
This contribution deals with the simulation analysis of the motion of oscillator with 
impacts (Fig.1). It is excited by harmonic force F0cosωt and its mass m can impact 
against a soft stop situated in certain distance r from the mass equilibrium position. 
Elastic and damping characteristics F(X) is assumed in piecewise linear form. 
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Figure 1. Scheme of the system and model of soft impact 

 
 
 

Denoting dimensionless deflection X=x/xst (xst=F0/k1) and using time 
transformation τ=Ωt, where Ω=(k1/m)1/2, then the oscillator motion is described by 
equation 
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Results of simulation are presented in (ρ,η) plane showing the areas of different 
regimes of impact motion, which are characterised by impact number z=p/n, where p 
denotes the number of impacts and n denotes the number of excitation periods, during 
one impact motion period, respectively. z=0 symbolizes impactless motion, which 
exists for higher clearances ρ. It is bounded by grazing boundary g0 (Figs.2-4), which 
corresponds to known frequency-amplitude characteristics of impactless motion.  

This paper is the continuation of paper [1] and extends it by bifurcation diagrams 
along horizontal sections of impact motion regions (Figs.2-4), for constant clearances ρ 
and quasistationary changes of excitation frequency η. The behaviour of this system 
was also explained in [2], but for ten times higher viscous damping β = 0.1.  

The ascertaining of the influence of damping on the system impact motions is 
therefore the aim of this contribution. The diversity of periodic and chaotic impact 
motions increases with decreasing viscous damping. Simultaneously hysteresis regions 
of impact motions increase over grazing bifurcation boundary g0 (into the region z=0 of 
impactless motion). Several such hysteresis regions are shown in Figs.2,3. Saliences of 
these regions get to the infinity for zero viscous damping and they press down to 
grazing boundary g0 with increasing damping.  

2. Regions of system motions   
Evaluated regions of periodic and chaotic impact motions for parameters β=0.01, 
k2/k1=10, k3/k1=2 are shown in Fig.2. They are labelled by impact numbers z. 
Impactless z=0 and fundamental motion z=1/1 exist over the resonance η=1 of 
impactless motion. Its amplitude-frequency characteristics g0 represents also the grazing 
bifurcation boundary. Big hysteresis region exist between boundary g0 and saddle-node 
stability boundary SN1/1 of z=1/1 motion. Similar hysteresis region of fundamental 
motion z=2/1 exist over the subharmonic resonance η=1/2. 

The main aim of this paper is the characterisation of subharmonic impact motions 
in subregion (Fig.3) of Fig.2, the next enlarged subregion of which is shown in Fig.4. 
There exist three types of region boundaries, which are marked by g or PD or SN. They 
characterise three typical bifurcations of the impacts oscillator motion. 

g - grazing bifurcation corresponds to the state of periodic motion z=p/n, when the 
periodic touch of moving mass with the stop appears during quasistatic change of 
system parameters. The transition cross grazing boundary is reversible for the oscillator 
with soft impact. New periodic motion with almost zero before-impact velocity of 
appeared weak impact is characterised by npz /)1( += , so impact number z increases. 

PD - period-doubling bifurcation appears on the stability boundary where z=p/n 
motion splits on z=2p/2n motion with double period. Transition cross this boundary is 
also reversible and mean value of impact number z does not change. 

SN – saddle-node bifurcation corresponds to stability boundary, where one of 
impacts disappears and system stabilises after a jump transition in a new, usually 
periodic z=(p -1)/n, motion. This quantitative and qualitative change of the system 
motion is non-reversible and number z decreases. One exception exists in impact 
oscillator with soft impacts. It explains the existence of hysteresis regions of impact 
motions. The statement of reversible transition cross grazing bifurcation boundaries 
excludes the existence of hysteresis region. Nevertheless they exist. The explanation of 
this reality is based on the following phenomenon. After crossing the grazing boundary 



 

 

g there appears motion with weak impact, marked e.g. z=p/nw. This motion exists in 
narrow region along grazing boundary g and is limited by SNw stability boundary. There 
arises a jump into the same type of z=p/ns motion, but with stronger impact. So, this 
quantitative and non-qualitative change is non-reversible and value z does not change. 
Only the motion with stronger impact exhibits the hysteresis and exists up to its stability 
boundary SNs. The quantitative jump on this boundary can result in the return into 
z=p/nw motion (value z remains) or in the jump into z=(p-1)/n motion. These problems 
are explained in more detail in [3]. 

3. Subharmonic motions of the order n 
Subharmonic motions exist between neighbour fundamental motions z=p/1 and 
z=(p+1)/1, where p = 0, 1, 2, … . They are distinguished according to the order n – the 
number of excitation period T=2π/η in the motion period. Motions of order n are 
derived from basic regimes z = p/n (n = 2, 3, 4…) after period doublings (z = 2p/2n, z = 
4p/4n, …), which can lied directly or through other derived motions into the chaotic 
impact motion. In the difference of the motion with rigid impacts, the regions of 
subharmonic motions with soft impacts can exist in separated energetic levels. The start 
of the system motion in the certain level depends in some cases on special ways during 
quasistatic changes of system parameters or on a special selection of motion initial 
conditions, according to the evaluation of basins of attraction [4]. These effects will be 
explained in more detail using bifurcation diagrams.  

4. Bifurcation diagrams 

The bifurcation diagram is the evaluation of characteristic quantities of the system 
motion during quasistatic change of system parameters through regions of different 
regimes of motion. Motion amplitudes Xm(η) and before-impact velocities X/

-(η) along 
horizontal section a, b, c of regions in Figs.2-4 are shown in Figs.5-9. It is necessary to 
mention, that Xm corresponds only to the lowest minimum of the motion, which appears 
in every period T and X/

- is included into diagram for every impact. The reason of this 
procedure is the possibility to ascertain values z=p/n according to the number p of 
branches z = p/n and the number n of branches Xm(η) of a certain impact motion. 

4.1 Bifurcation diagrams of subharmonic motions of order n = 2 

The simplest diagram in the neighbourhood of points a1, a2, a3 of line a (ρ=3.3) in 
Figs. 3,4 is shown in Fig.5. Impactless motion z = 0/1 exists with increasing frequency 
η up to grazing boundary g0 (point a1), where z = 1/1 motion continuously arises and is 
stable up to its period doubling PD1/1 (point a2). The inverse PD1/1 appears in point a3 
and z = 1/1 motion stabilizes. The transition through regions of motion z = 0/1, z = 1/1, z 
=2/2 cross boundaries g0 , PD1/1 is reversible, without hysteresis phenomena. 

Bifurcation diagrams (Fig.7) along line b (ρ=1.9) are more complex and they were 
evaluated separately for increasing and decreasing η. Impactless motion transits on 
grazing boundary? g0 (point b1) again in z = 1/1w motion, but its stability ends on SN1/1w 
boundary. New z = 1/1s splits two times and z = 4/4s stabilizes. This motion transits 
through the inverse Feigenbaum cascade into z = 2/2s motion (point b2). This cascade 
up to z = 1/1 motion is interrupted by the transition of z = 2/2s motion into z = 1/2 
motion on stability boundary SN2/2s (points b5). The second impact appears in z = 1/2 
motion on its grazing boundary g1/2 (points b6) and the inverse Feigenbaum cascade 
ends in points b7. The course of bifurcation diagram in Fig.7(b) is the same, except two 



 

 

hysteresis phenomena between points b4, b5 and b1, b3. The chaotic motion arises at 
the end of the period doubling cascade of motion z = 2/2s and it escapes in point b3 into 
impactless motion. 

Bifurcation diagram between points c8 and c5 of line c (ρ = 3) in Fig.4 is shown in 
Fig.6 right down. It explains next type of the interruption of the Feigenbaum cascade of 
motion z = 1/1, which starts with decreasing η in point c5. The z =2/2 motion splits 
again near point c6 on z = 4/4 motion, but the weakest impact disappears and z 3/4 
motion arises. Only Feigenbaum´s cascade of z = 3/4 (z = 6/8, z = 12/16, …) motion 
ends in the chaotic motion, which escapes into z = 1/3 motion in point c8. This is 
precisely one of ways from the level of subharmonic moitons of order n = 2 into the 
level n = 3.  

4.2 Bifurcation diagrams of subharmonic motions of order n = 3  
Subharmonic motion z = 1/3 and other derived from it motions exist in a large 
frequency interval between points c12 – c4 of line c (Figs.3,4). Motion z = 1/3 appeared 
in point c8 is stable between points c9 and c3, which belong to grazing boundary g1/3. 
There arises z=2/3 motion, which losses the stability in point c4 (SN2/3w) and jumps into 
z = 1/1 motion. Near grazing boundary g1/3 (point c9) exists stability boundary SN2/3w, 
where z=2/3w motion jumps into z = 2/3s motion and it returns into z = 1/3 motions in 
point c2 on boundary SN2/3s. Maximum displacements and impact velocities of z = 2/3 
motions exist along boundary SN2/3s.  This phenomenon is connected with the resonance 
of z = 2/3 motion and big hysteresis region z = 2/3 in Fig.3. On left boundary PD2/3 
(points c10 in Figs.3,6) begins the Feigenbaum cascade (z = 2/3, z = 4/6, z = 8/12, …), 
which ends in point c11 by the transition into chaos. Its escape into impactless motion z 
= 0/1 appears in point c12. 

It is important to mention, that region of z = 2/3s impact motion has the sharp 
salience created by two different stability boundaries SN2/3s (Fig.4). The intermittency 
chaos appears along a part of lower (horizontal) boundary SN2/3s. This phenomenon was 
ascertained and in more detail explained in [5] for the oscillator with rigid (Newton´s) 
impacts. Only the difference is that intermittency chaos exhibits hysteresis into region 
of periodic z =2/3s impact motion. 

One of other possible ways into level n = 3 of subharmonic motions is the faster 
transition from impactless motion z=0 cross grazing boundary g0 (points c1 in Figs.4,6). 

Next examples of subharmonic motions of order n = 3 along line a (ρ=3.3) of 
Figs.3,4 are shown in Fig.9. They cannot be received by quasistatic changes of 
frequency η, but by other means, e.g. by the start from certain motion initial conditions 
or from other parts of their regions of existence and stability. For example z = 1/3 
motion just exists in the single horizontally shaded subregion z = 1/3 in Fig.4. 
Bifurcation diagram z=1/3 between points a13 and a11 in Fig.9 can be obtained after 
increasing ρ to line a (ρ=3.3). Motion z=1/3 losses the stability (SN1/3) in point a13, 
then jumps into z = 1/1 motion (Fig.9) and transits into z = 2/3 motion on grazing 
boundary g1/3 in point a11. 

The z = 2/3s motion exists between points a7, a8 (Figs.3,9). This motion losses the 
stability in point a7 (SN2/3s) and jumps into impactless motion. The period doubling 
cascade of z = 2/3s motion begins in point a8 (PD2/3s), ends in point a9 in chaotic 
motion, which escapes into impactless motion in point a10.  

 



 

 

4.3 Bifurcation diagram of subharmonic motions of order n = 4 and n = 7 
These subharmonic motions should be obtained also by a special way. Regions of z = 
1/4 and z = 2/4 motions are shown in Figs.3,4. Bifurcation diagram of z = 2/4 and 
derived (z=4/8, z=8/16, …, chaos) motions between points a4 and a6 of line a are 
shown in Figs.8,9. Motion z = 2/4 losses stability in point a4 and transits on z = 1/1 
motion, while chaotic motion escapes into impactless motion in point a6. 

Regions of subharmonic motions of order n = 7 were observed by chance and their 
existence regions are not included into Figs.2-4. Bifurcation diagram of motions z = 3/7, 
z = 6/14 and chaos along line a (ρ = 3.3) is in Fig.9.  

5. Conclusion 
Small damping of impactless motion introduces large diversity of periodic and chaotic 
impact motions. There were ascertained and explained, using numerical simulations, 
several phenomena of subharmonic motions with soft impacts: 

• grazing, period doubling and saddle-node bifurcations, 

• reversible transitions cross grazing and period doubling bifurcation boundaries, 

• two types of quantitative jumps by saddle-node instabilities, 

• separated levels of different order subharmonic motions, 

• interrupted Feigenmaum´s cascade into the chaos 

• interrupted development of saddle-node instability, which leads into the 
intermittency chaos. 

Acknowledgement 
This investigation is financially supported by the Grant Agency of the Czech 

Republic, Project No. 101/00/0007. 

References 
[1] Tondl A., Peterka F.: To the Dynamics of Oscillator with Soft Impacts, Proc. 5th 
International Conference on Vibration Problems, Moscow, 2001. 
[2] Peterka F., Tondl A.: Dynamics of Oscillator with Piecewise Model of Soft 
Impacts. Engineering Mechanics 2001, Svratka, Czech Rep., pp.209-210, CD ROM. 
[3] Peterka F.: Dynamics of Oscillator with Soft Impacts. Proc. DETC’01, Sept. 9-12, 
2001, Pittsburgh, Pennsylvania, USA, Paper DETC 2001/VIB-21609, CD ROM. 
[4] Peterka F., Čipera S.: Regions of Subharmonic Motions of the Oscillator with 
Hertz´s model of Impact. Proc. Dynamics of Machines 2002, Institute of 
Thermomechanics AS CR, Prague, pp. 145-152. 
[5] Peterka F., Čipera S., Kotera T.: Additional impact causes the intermittency chaos 
of unstable subharmonic motions of impact oscillator. ICTAM 2000, Chicago, USA, 
August 27- September 2, 2000, International Congress of IUTAM, Abstract Book, pp. 
144-145. 

 

 
 


