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Abstract

The long-term behaviour of a crystalline rock has been modelled as a visco-
plastic problem. The Perzyna type of material models, which is based on so-
called overstress, has been used. The constitutive law, known as Lemaitre’s
creep model is based on the use of internal state variables attached to specific
phenomena, including hardening of material. The identification of model was
carried out with aid of genetic algorithms and experimentally obtained data.
The used genetic algorithm is based on differential evolution scheme and was
adapted for fast model parameter identification.

Keywords: visco-plastic behaviour, material model, creep, polycrystalline ma-
terials, long-term behaviour.

1 Introduction

The mechanical time-dependent behaviour of anhydritic rock was scarcely investi-
gated in the past and only few works exist on the topic, Sahores (1962), Miiller
W.H.& Briegel (1978), Miiller P.&Siemens (1974). The behaviour of anhydrite, like
many other geomaterials like rock salt (Aubertin, Hardy, 1998) or hard rock (Malan
1999), is characterized by delayed straining when subjected to constant or slowly
changing loading.

The design of undeground structures, excavated in such strain-rate sensitive ma-
terials, requires the determination of a time-dependent constitutive law capable of
predicting of long-term behaviour. This study analyses the convenience of Lemaitre’s
law, Lemaitre&Chaboche (1990), formerly used for long-term behaviour of metals,
for crystalline rocks, in particular anhydrite. First of all, the time-dependent be-
haviour of anhydrite was examined in the laboratory and special testing program
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was designed for this purpose. A range of classical uniaxial and triaxial and physi-
cal identification tests was performed before a creep testing program has started. A
multiple stress-level uniaxial creep tests were carried out to observe different creep
phases.

2 Experimental investigation

The design of testing program was led with aim to cover all aspects of mechanical
behavior of anhydrite. All specimens were taken from the drill holes in the vicinity of
Modane (France) in alpine region, from the depth from 650 to 1150 m. Preliminary
uniaxial compression tests were performed to find out the compressive strength of the
material (o, =50-80 MPa) and other mechanical properties (E=40-90 GPa, v =0.21-
0.27). Triaxial compression tests, with various confining pressure, were designed to
simulate probable conditions in the depth in rock mass.

A unixial compression test with very low strain-rate was carried out on device
specially concieved for this purpose with strain-rates going down to 6.0-10%sL.

Creep tests were performed on dead-load cantilever device with rigid frame. The
cantilever system transmits the force of dead load directly onto the cell unit with
specimen and almost absolute constant load on specimen is thus assured. Creep test
stress-levels were chosen to cover whole range of creep phases (attenuating creep,
stable crack propagation resulting in steady-state creep, unstable crack propagation
leading to tertiary creep).

3 Modelling of time-dependent phenomena

Presented visco-plastic model is suitable tool describing time-dependent behaviour
with strain hardening of material. This model does not include a damage component.
The choice of long-term parameters is discussed further on.

The model is based on the visco-plastic theory formulated by Perzyna (1966)
for rate-sensitive plastic materials based on so-called over-stress concept. It gives
incremental constitutive equations for the transient creep phase. The assumption is
made that the strain rate tensor can be additively decomposed into an instantaneous
reversible (elastic) part and an irreversible (inelastic) part,

Eij = €5 + €37 (1)

where irreversible strain rate combines viscous and plastic effects and is given by
following relationship
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where 7 is viscosity coefficient of the material, G is visco-plastic potential and ®
is function containing static yield function F. The function & is controlled by
Macauly’s brackets

(a(F))= %[@(F) + \@(F)H. (3)

The yield function F' includes the over-stress concept through effective stress f and
strain hardening parameter s, which depends on the updated accumulated visco-
plastic strain as shown further on. Modified yield function F' can be expressed in



the following form
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where €P is considered as the internal state variable corresponding to strain hard-
ening. To produce a practical tool, the power laws for the function ® and for &
have been introduced similar to those proposed by Lemaitre. The relationships are

summarised by equations (5) and (6)
O(F)=(F+1)", (5)

K(€7) = (7). (6)
Introducing (6) into (4) and then into (5) the function ® reads

o(F)= (1(0)) (™)™ ")

The irreversible visco-plastic strain defined in (2) can then be formulated in the

following manner
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If we define the constitutive law as associated, the yield function is equal to plastic
potential. This assumption takes into account the fact that visco-plastic deforma-
tions develop without any volume changes. The derivative of yield function with
respect to stress tensor components gives normalised deviatoric stress tensor
oG Sij
= (9)
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The irreversible strain rate which combines viscous and plastic effects is given by
the following relation
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If the simplifying hypothesis, that constitutive law is unidimensional one, is adopted,
i.e. the material flows only in one direction, the formulating of constitutive law takes
more concrete form. The only component of stress tensor is applied stress, 011 = 0.

Stress deviator component s;; is in one dimension problem taken as s;; = 2/30.
The norm of stress deviator then equals to

Isall =20 (1)

Taking into account preceeding statements, the constitutive law is presented in the
form

g = Ao™(e"P)™, (12)
where A is newly defined viscosity parameter

A=~(y/2/3)"" (13)

The law (12) needs the identification of three parameters listed below



A viscosity coefficient of the material (A > 0),
n  stress exponent n > 1,

*

m* strain hardening exponent (m* = —m/n > 0).

This law can be easily expressed in its integral form with aim to obtain the relation
between strain and stress as a function of time. The left side is replaced by derivative
of visco-plastic strain with respect to time and the following form is obtained
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U= Ao™(e)" 14
g = AotEm) (14)

Integrating the equation (14) the power law for describing the visco-plastic behavior

is obtained
[ ey = [ agtat, (15)
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At time ¢t = 0 viscoplastic strain is zero and then ¢ = 0. The power law is then in a

form )

1-m

e = [(1 - m)Aa"t] (17)

The equation (17) is general expression for viscoplastic behavior of material. Total
strain is than calculated from (1)
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For constant stress deviator tensor the expression (18) describes the transient creep
phase with decreasing visco-plastic strain rate. If m = 0 is put in (12), the secondary
creep phase can be described with the same law.

4 Model parameters identification

The method of identification of parameters of Lemaitre’s law is based on constant
strain-rate test and creep test on anhydrite specimens.

4.1 Hardening parameter identification

During the quasi-static test, which is controlled by strain-rate and in which the
strain rate is sufficiently low, the viscoplastic deformation can develop in real time.
In other words the test is performed in such a way that visco plastic deformation has
enough time to produce in real time. Supposing that it is true, the hypothesis that
viscoplastic strain-rate tends to total strain-rate, can be pronounced, i.e. £ = ¢£.
Let us consider the equation representing the constitutive law (12) in the following
way with respect to the previous paragraph and supposing that the deviatoric stress
is in case of uniaxial loading the axial load o{® = ¢. Since linear regression will
be used to set up dependencies between the parameters, the logarithmic expression

of (12) is needed to linearize the problem.

Iné=lnA+nlno +mlne” (19)



The equation is then tranformed to obtain In ¢ as a function of In&"?.

Inoc=b—m*Ine” (20)
where
=2 (21)
" n
and .
b=—<lns’—lnA). (22)
n
The multiplicator constant m* = —m/n is known as strain hardening exponent from

equation 6. The ratio m* can be accurately determined as the concavity of the curve
in (01,¢1) plot. In the (In(o1) — In(e*?)) plot the ratio m* represents the slope of
the curve, figure 1. The linearity of the curve is well verified in a strain section,
between the elastic limit and the highly damaged zone. In the same diagram the
intercept of the In o;-axis gives the viscosity parameter A which depends on n. Thus
the parameters m and A are defined in relation to n. The method of least squares
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Figure 1: Identification of parameter m* on specimen F12-22a.

is used to determine the abscisse b and the slope m* of straight line described by
equation (20) using the experimental data from quasi-static test with low strain
rate. Once the parameters b and m* are identified, the following expressions can be
written from (21) and (22), which set the relation between parameters A and m to
n.

m=-m"n (23)

A =exp(Iné — bn) (24)

A loading phase between 24 and 64 MPa was exploited for specimen F12-22a and
gives value of hardening parameter m* = 1.49, figure 1(b). The parameter was
calculated also for reloading path but only slight difference from later was observed.
It is also observed that for the same value of stress o, we get more deformation for
reloading phase in which accumulated deformation is already hidden. Boidy&Pellet



(2001) reffer that strain rate doesn’t affect the ratio m* much and for the purpose
of our study, the value mentined above was adopted. The abscisse value b=16.7 was
found for on the logarithmic plot.

4.2 Viscosity and stress exponent parameter identification

The identification of the two parameters of the model was performed with use of
genetic algorithm. The use of genetic algorithms is suitable when the exact solution
of scientific problem can’t be determined. In indentification of model parameters,
usually the analytical model prescription is known and the file of measured data
obtained. The task is to find the best fit of model to experimental data, i.e. deter-
mine set of parameters which would satisfy previous condition. From mathematical
point of view, we search for such parameters for which the sum of difference of least
squares between experimental data and model values is minimal. Mathematical
solution of such a problem demands at least some derivates of the function with
respect to some parameters and treatment of experimental data file.

The great advantage of genetic algorithms is very liberal demand on optimalized
function, i.e. the function doesn’t need to be differentiative nor continuous which is
not the case in regression methods. Neither they demand any special treatment of
experimental data. The algorithm was adjusted to fast model fitting.

4.3 Algorithm SADE

For our purpose the algorithm SADE (Simplified Atavistic Differential Evolution)
was used, Kucerova&Hrstka (2000). Its structure takes its origin in classical genetic
algorithms. It keeps usual scheme of mutation, cross-over and selection. To be able
to work with real numbers, the simplified cross-over operator (which has originally
binary form) was modified according to differential evolution.

The algorithm SADE has in simplified C-language typing following form

void SADE ( void )

{
FIRST_GENERATION ();
while ( to_continue )
{
MUTATE ();
LOCAL_MUTATE ();
CROSS ();
EVALUATE_GENERATION ();
SELECT Q;
}
}

The first step is to generate random starting generation (function FIRST_GENERATION)
of parameters sets. It is convenient to generate parameters within their logical range
that can be determined from experience. The quastion is how many of new sets is
to be generated. This number is first algorithm constant (called pool_rate) that
must be determined.

In the function MUTATE a certain number of new sets is generated from starting
generation. The number of newly generated sets is controlled with second constant



radiation. This constant is usually kept low in order to prevent excessive dispersion
of parameter sets and not ot slow down the convergency.

Operator LOCAL_MUTATE was created with aim to search for solution with bigger
precision. It creates again new sets of parameters in close vicinity of existing sets.
Third constant local _radiaton defines a number of new sets to be generated.

CROSS operator controls the number of newly created sets in such a manner that
the total number is the double of initial starting generation. A new set is created
from three randomly chosen sets according to equation 25, [ref.5].

D = A+ cross_rate x (B — C) (25)

The fourth constant cross_rate influences the convergence of algorithm the most
of all constants. Its magnitude is usually from 0.1 to 0.5.

Function EVALUATE_GENERATION evaluates all parameter sets. It calls the eval-
uating function fitness which for each set of parameters returns the value of
solved function (material model prescription). In this concrete case the function
EVALUATE_GENERATION returns the error defined as a sum of least squares between
experimental data and solved function using actual parameters set.

Function SELECT reduces the total number of sets in file to half, i.e. the same
number of sets as initial number of newly generated sets. This is done on the
principle of tournament slection in reverse order. From two randomly chosen sets,
worse is disqualified.

All constants must be carefully determined and testing runs must be performed
to find out the sensibility of algorithm on constant values.

4.4 Fitting Lemaitre’s viscoplastic model parameters using
GA

Let us consider first the Lemaitre’s law in the form given by equation (17). Three
material parameters occur in model, A,n,m, with physical meaning mentionned
peviously. Genetic algorithm, however, works with pure mathematical form of con-
stitutive law and is very sensible on the form of fitted function. From the experiment
record the viscoplastic deformation as a function of time was obtained.

The function with time variable ¢ is examined. Obviously the independent pa-
rameter of the function is exponent 1/(1—m). This can be for the reason of simplicity
replaced with new parameter d

d=1/(1-m). (26)

Since the stress ¢ is a constant during any creep test phase and other parameters
are dependent and can be considered constant for given material, the function can
be simplified by introducing another coefficient a.

a= Ao" (27)

The constitutive law is then written in the following form which contains only two
independent parameters and from which the relations for other parameters are easy

to derive. J

e’ =

—at

d

(28)



To be able to optimalize the parameters a,d, the intervals within which parameters
can occur are required by genetic algorithm solver. They are derived from the
margins set up initially for original parameters': o € (1,100), n € (1,20), m €
(=5,0) and A € (1073°,107%). The margins for coefficients d and a are then
d € (0.1,1) and a € (1073°,10!) according to expressions (26) and (27).

Proceeding algorithm SADE with function (28) the following problem was en-
countered: the margins for parameter o was too wide (range over order of tens)
and the required precision of calculation (error of order 10™7) was very high. These
two requirements didn’t match well and the function had to be modified to remedy
this problem. This proved high exigency of algorithm on function prescription with
respect to the margins and solution precision. A new parameter ¢ was introduced
to kill off the high exponent of parameter ¢ margins, a = 10°. New margins for
parameter ¢ were calculated, ¢ € (=30, —1) and the final version of solving function
has the following form .

e”? = [%106 t] (29)

To obtain conrete values of original parameters that figure in Lemaitre’s viscoplastic
law, it was necessary to transform found parameters on original ones. These are
calculated from expressions for hardening exponent m, for stress exponent n and for
viscosity parameter A.

m=—— (30)

A=10°(")"" (31)

Optimalized function in algorithm SADE was the sum function of least squares of
differences between measured values and calculated values from model, which has

following form
10¢ b 2
(Gs) -] 2

where p is total number of experimental data points (¢;, €;").

As conclusion on use of genetic algorithms for identification of material model
parameteres it can be stated that one should have in mind that genetic algorithm is
very sensible on function prescription. The introduced parameters must be lineary
independent. In opposite case, there exists infinite number of solutions which per-
turbes the algorithm solver. The function must be therefore in the simplest form
from the mathematical point view, even though it hides temporarily the physical
representation of parameters.

In the table 1 the results from previous genetic algorithm fitting of the creep tests
curves fro anhydrite specimen f31-33 are presented. Auxiliary parameters c,d are
calculated for given stress-level with displayed error of least squares. Successively,
the propre Lemaitre’s model parameters m,n,A are obtained.

The figure 2(a) shows the result of one stress-level fitting of experimentally ob-
tained data using genetic algorithm. The extrapolation of experimental data on
longer time period is shown on figure 2(b). Both graphs are calculated for specimen
F31.

Values are estimated with extremes wide enough for crystalic material at room temperature.
Stress margins correspond to actual creep tests stress levels on anhydrite.



o c d error A n m
38.49 38.385 0.1345 1.498e-07 5.706e-46 4.326 -6.433
49.19 33.236 0.1578 1.234e-07 4.891e-40 3.591 -5.339
54.00 19.339 0.3325 1.177e-07 2.101e-22 1.350 -2.007
58.96 16.820 0.3845 6.852¢-08 1.993e-19 1.077 -1.601
61.44 15.869 0.4367 8.385e-08 3.798e-18 0.867 -1.290

Table 1: Results from GA calculation: model parameters m,n,A; o is applied stress and
error is calculated by means of least squares; calculated for m* = 1.487
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Figure 2: Fitted experimental data results for specimen F31.

5 Conclusion

The visco-plastic material model was used to describe long-term behaviour of anhy-
dritic rock. The model turned out to be a suitable tool for deformation prediction
over long periods of time and fitted on experimental data is ready to be implemented
ino finite element code.

It was proved that the simple mathematical tool as genetic algorithm can find
its applicability in solving engineering problems. Linear regression was also used
for fitting the experimental data, but special treatment of data was needed and
presented more work that for the genetic algorithm.
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