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The main goal of this paper is to study how non-linearities of components and 
subjective ride comfort perception quantity assessment influence the ride comfort, 
and find the best setup of vehicle carrying spring and damper parameters via 
optimization of a conceptual quarter-car model. 
In the paper is also a disscussion of how to create proper representative of the 
road exitation considering the properties of the stochastic road derived by power 
spectral density from time domain simulation. 
Comparison of the results from numerical integration and from frequency domain 
analysis and the influence of simulation time and time step on frequency 
bandwidth and accuracy of the results are also mentioned. 
Objective function for ride comfort optimization is in this paper defined as the sum 
of the normalized human perception quantity and the normalized normal tire force 
distribution. 
Key words: car ride comfort, stochastic road, non-linearities of components 

1 Introduction 
Steady growing customers requirements for comfort and safe ride of personal cars 

force the automotive industry to stronger use of virtual prototyping of the cars including 
also the prediction of the ride comfort.  

In the past, several empiric methods for describing the subjective human 
perception of the comfort were developed. Most of these can be characterised as filters 
of the excitation at relevant comfort points (for example the seat, steering wheel or the 
floor). Some of these methods were used in simple linear models (3-12 Dof) studying 
main influencies of the model parameters and of stochastic road excitation. 

We will study the significance of the subjective human ride comfort perception 
for purpose of car optimization in the concept phase. 

On the other hand, in the concept phase we face the problem of not knowing the 
car properties exactly, mainly the main non-linear vertical behavior (such as bumps, 
friction and non-linear damping). To answer the question of the significance of the non-
linear behavior we have to look for the solution in the time domain.  

Therefore the properties of a stochastic road and the possibilities of creating one 
representative from a power spectral density for a time domain simulation are discussed.  

Further some of the perception quantity evaluation methods of ride comfort are 
cited and compared. 



 

 

The results from numerical integration and from frequency domain analysis are 
evaluated to prove their acceptance. Also the influence of simulation time and time 
step on frequency bandwidth and accuracy of the results are studied. 

Afterwards we can determine the influence of the components non-linearities to a 
possible optimization of a concept car model. 

2 Stochastic road 
If the car is driven on an uneven road under normal conditions (no hard braking, 

etc) we speak of the ride comfort. Supposed driving a straight line, every wheel is 
excited by stochastic unevenness. Many empirical tests have shown that the stochastic 
road excitation is an ergodic process. The one-sided power spectral density of a road 
can be represented by [1][2][3]: 
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Where: 
Ωx0  is the spatial angular reference frequency 
Guu(Ωx0) is the degree of roughness 
w  is the waviness 
The Equation represents a straight line in a double logaritmic scale. 

Usually w achieves values between 1.5 – 3, the parameter Guu(Ωx0) between  
0.3cm-3 and  62cm-3. For a federal road one can use 2 for the parameter w and 4 for the 
parameter Guu(Ωx0). 
For linear models we can use this equation as input using v as the driving velocity: 
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For non-linear models it is necessary to use a numeric simulation in the time 
domain. We can transform the excitation first to the spatial domain. Scanning the power 
spectral density we obtain the effective power value for a single frequency [11]: 
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Since we generate only one represantative of the signal with the same power 
spectral density, the phase angle ϕi gets  randomly distributed values between 0 and 2π.  

There are still two variables ∆Ω and the length of the generated road (size of the 
vector x) left, both are functions of the velocity. ∆Ω is defined by the highest needed 
frequency in the result data. As we will see later, human comfort perception comprises 
frequencies up to 30Hz. Traveling with a velocity of 20m/s, ∆Ω should be at least 0.6m-

1, using Nyquist inequalence 0.166m-1. The length L of the vector x is also defined by 
the velocity and the Nyquist inequalence: 

L>(ωmin)-1*v*(2.5 to 4). 
ωmin should be chosen small enough to not interfere with the system frequencies of 

interest. For example for ωmin = 0.1s-1 and velocity v=20m/s, L would be 500m to 800m. 



 

 

3 Human perception of the vibration 
The human response to vibration is dependent on the excitation frequency. The 

ISO 2631 uses a single DOF system to represent a human body [7]. VDI2057 presents 
curves of the constant perception for harmonic vibration [4][5][6]. Cucuz [8] developed 
numeric curves of perception and studied the influence of the stochastic and in-
stationary vibration. He also introduced a correction factor C for the stochastic 
excitation. Klinger [9] gives explicit weightings for frequencies. Figure 1 shows the 
comparison of these methods. In practical use we understand these functions as filters of 
the human perception modulating the power spectral density of the e.g. seat 
acceleration. The standard deviation is then the perception quantity or K-value: 
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Where for linear systems: ( ) ( ) ( )ΩΩΩ=Φ uuiiiKi GHBC 222 , 
with: 
i  is the index for the measured postion (seat, hands, …) 
C is the factor for the stochastic excitation 
B is the frequency weighting function (the filter of the human perception) 
H is the transfer function from the tyre patch to the i position. 
Guu is the power spectral density of the excitation 
The resulting perception can be then calculated: 

∑=
i

ii KbK 222 , 

where bi is the weighting factor for different position and direction to the 
perception quantity. 

 
Figure 1: Seating human perception filters for a) seat b) hands and c) feet in logarithmic 
scale. Blue – VDI, Green – Cucuz, Red – Klinger 

In Figure 1 a) one can note a high sensitivity of a seating human on vertical 
vibration at about 5Hz, same for all methods. Klinger and Cucuz filters behave nearly 
simillar in all perception criterias. One can markedly see a big difference between VDI 
and Cucuz/Klinger for low frequencies. This difference is less important because of the 
transfer functions from the road excitation to the seat,- hands,- or feet-acceleration , 
which are low for these frequencies. 

4 Qurter car model 
The quarter car can be used under the conditions developed in [10]: 

� symetric vehicle about the length axis (no oscilation in x and y direction), 

a) b) c)



 

 

� same excitation for the left and right wheel (no roll angle oscilation), 
� the motions of the for- and aftbody of the car are decoupled (long cars), 
� driver is seating in the middle of the suspension (strong simplification for one 

driver), 
it is possible to use a strongly simplified car model as pictured in Figure 2 a). 

4.1 Linear quarter-car model 
For u : 

zuzuzuzuzuzu rkkss &&& ====== 654321 ,,,,, . 
Matrix notation in state space of such a linear model, also suitable for numeric 

integration is then: 
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4.2 Non-linear modificatios of the quarter-car model 
The vertical dynamics of a personal car is in general non-linear. Stick-slip effects 

in the damper can occur. For larger vertical displacements of the carrying spring bump 
stops can progressively change its stiffness and fence the vertical motion. Vertical 
damping can be also non-linear. Considered all these effects, the linear quarter car 
model will be modified as shown in Figure 2 b). 

 

                                      
Figure 2: Quarter car dashpot model (3DOF) a) linear b) non-linear 

                                                                                                                   
Figure 3: Rheologic Masing model of a a) Friction element. Scheme of b) a non-

linear bump stop, c) a non-linear Maxwell element 

� Stick-Slip effects in the damper 
A car dashpot damper consists of sliding parts. Under non-axial forces acting on 

the damper (e.g. driving through a curve with the McPherson suspension) even a 
damper blocking can occur. From the ride comfort point of view small velocity 
amplitudes are important, because the viscous damping does not work yet. These effects 
can be described with the rheologic Masing element as shown in Figure 3 a). 

 

a) b) c) 

a) b) 



 

 

Such an element can be described by the equation [12]: 
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� Bump stops 
Bump stops are additional springs on celasto material base. The stiffness function 

is progressive. Schematic picture is in Figure 3 b). 
To describe the bump stop with parallel linear spring we will use the function: 

3
00 )( xxcxcF bk −+= . 

The coefficients ck and cb can be identified by a polynomial fit of a displacement-
force characteristic. 

Because of saving development costs, very often the same bump stop is used for 
different springs. The change of the spring stiffness is then no more proportional to its 
linear part. 

� Non-linear damping 
It is advantageous to use a non-linear Maxwell element, which enables us also to 

take the bearing of a damper into account. A scheme is pictured in Figure 3 c). 
Writing the force equilibrium: )()( 11 xdxxc mm &=− . 

We get: ))(( 1
)1(

2 xxkdx m −= −& . 
Where: )( 2xdm &  is the force in the non-linear dashpot, calculated for example from 

a spline and cm is the stiffness of the damper bearing 
Hence we actually need the inverse function of the damper characteristic.  

We can fit the inverse damper characteristic with a polynomial: 
dcFbFaFFdm +++=− 23)1( )( . 

Both, the Masing and Maxwell elements introduce one new state variable each. 
For the Masing element the force itself is defined as a state variable. For the Maxwell 
element the internal displacement is a state variable. Both are represented by one 
differential equation of the first rang. During the integration we will use the half-
implicit integration for the car system and an explicit integration for the Masing and 
Maxwell elements. The bump stop is defined directly and does no need any state 
equation. The non-linear car is then represented by the equations (see also Figure 2 b)): 
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4.3 Numeric integration of the quarter car 
For a linear model as introduced before, it is certainly possible to solve the 

perception quantity K using the frequency domain analysis (Chapter 3). We want study 
the non-linear modifications of the linear model. For this reason we will solve also the 
linear model using numerical integration in order to compare the obtained results with 
the results from frequency domain analysis. 



 

 

Several methods can be used for the numeric integration. The Half-Implicit 
integration can be chosen as the most feasible method. It provides energy neutral 
behavior with larger possible integration step size. Small numerical damping in the 
system is important for perception quantity prediction.  

Using numerical integration, the simulation time and the time step are important 
for the stochastic excitation. The time step has direct influence to the frequency 
bandwidth of the results. The simulated time has an influence on the accuracy of the 
results, since we study statistical values such as power spectral density. 

First, in Figure 4 a) one can see the significance of the integration stepsize on the 
resulting power spectral density of the acceleration on the seat. The difference at higher 
frequencies is less important because of the filter functions of perception quantity, 
which strongly decease at higher frequencies. In Figure 4 b) the influence of the 
simulated time in terms of the traveled length for different stiffnesses of the carrying 
spring Ck is plotted. The difference in the power spectral density is important. The first 
peak of the 100m distance is 50% of the one with 900m. One can see that for the 
traveled distance of 100m the first peek is not clear enough (See also Figure 4 b), scaled 
part). Reason for this behaviour is explained in (Chapter 2). 

 
Figure 4: Power spectral density of the chassis acceleration solved a) in frequency 

domain and b) through numeric integration with different step sizes and with different 
traveled length as a function of the carrying spring stiffness Ck. 

5 Comparison of the human comfort perception evaluating 
methods 

In the vehicle engineering praxis, optimization of the ride comfort of the car is of 
interest. The absolute value of the comfort perception is not of big importance in the 
concept phase, supposed the value is not „too high“. 

The carrying spring and the damper are the most common parts to optimize the 
handling and comfort criteria of a car. 

In the following examples we will use the linear quarter car model as described 
earlier. The car velocity is 20m/s. For the road we have chosen w=2, Guu(Ωx0) =4cm3, 

L=900m, ∆Ω=.01m-1 for the numerical integration. Our design variables are Ck=[5100, 
10000, 20200, 44000] N/m and Dk=[100 500 1140 3000] Ns/m as in [10]. 

In Figure 5 a) the comparison of the VDI, Klinger and Cucuz perception quantity 
is showed. The results are calculated in the frequency domain. One can see differencies 
of 2% in the domain of high stiffness and damping to 6% in the domain of low stiffness 
and damping for VDI and Cucuz, while the difference between the Cucuz and Klinger 
criteria is for the whole area very small 0.5 to 1%. The gradients of the surface are 
nearly the same, which is important for the optimization.  

a) b)



 

 

 
Figure 5: Human comfort perception quantity surface for a carrying stiffness and 

damper variation. a) Comparison of VDI, Klinger and Cucuz criteria in frequency 
domain b) Comparison of the perception quantity after VDI for the frequency and time 
domain analysis 

The results of the numerical integration (time domain) and the frequency analysis 
are compared in Figure 5 b). The perception quantity resulting from the time domain 
analysis is about 2.5 (5%) point higher for the domain at higher stiffness and damping 
and about 1 point (10%) higher for the domain of the low stiffness and damping. Again 
the gradients of the design surface are again nearly the same.  

6 Significance of the non-linearities to the ride comfort 
optimization 

As mentioned before, it is not our intention to predict the absolute value of the 
comfort perception quantity, but to find the best setup of the vehicle (in terms of 
carrying spring and damper) under the given external circumstances. Let us now study 
the influence of the main non-linearities in our car-model (Chapter 4.2). 

6.1 Stick-Slip efects in the damper 
Because of the assembly of the damper, small coulomb friction is always active. 

In Figure 6 a) the comparison of the linear model and the non-linear model is shown. 
We used only the coulomb friction of 10N, which is a quite common value. All other 
components are linear. The difference of the design surface is very small (about 10%) 
for low stiffness and damping of the carrying spring and damper. The difference 
deceases when the stiffness of the carrying spring and damping grows. This is because 
of the stronger forces acting in the main spring and damper, which dominate against the 
small coulomb friction. In Figure 6 b) the influence of a bigger coulomb friction forces 
is pictured. In this case the coulomb friction is significantly stiffening the connection of 
the unsprung mass to the chassis. This is also the reason why the stiffness of the 
carrying spring becomes less important with the increasing coulomb friction. The 
damping amplifies this effect.  

Small coulomb friction does not have an important influence to the ride comfort 
optimization of the vehicle. In opposite, high values of coulomb friction does not enable 
to make significant changes to the comfort perception quantity using the carrying 
spring. 

6.2 Bump stops 
As described earlier, we model the bump stops of the carrying spring with a cubic 

equation. For large relative displacement amplitudes of the unsprung mass to the chassis 

a) b) 
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Cucuz, Klinger 



 

 

the stiffness rises significantly. Hence the ride comfort is getting worse (Figure 7 a)). 
For higher damping the relative displacement gets smaller, hence the bump stop is not 
involved (Figure 7 b)). The bump stop is mostly in action for rough roads. In this 
section we used w=2, Guu(Ωx0) =64cm3 and L=900m, ∆Ω=.01m-1 for the road for the 
numerical integration. 

Again, the influence of the non-linearities to the characteristics of the perception 
surface is not significant for an optimization. 

 

 
Figure 6: Comparison of the influence of the small coulomb friction on the 

perception quantity, a) linear and R=10N, b) R=50N and 100N 

 
Figure 7: a) Comparison of the influence of a bump stop to the perception 

quantity for a rough road (w=2, Guu(Ωx0) =64cm3). b) The force of the carrying spring 
with a bump stop for different damping Dk, note the different displacement bias. 

6.3 Non-linear Damper 
The non-linear damper is represented by a non-linear Maxwell element using 

a cubic equation for the inverse damper characteristics. We chose a common non-linear 
damper characteristic. To be able to make a comparison with the preceding models we 
scaled the characteristic in a way, that the linear interpolation is the same as the former 
linear damping (Section 5). Figure 8 shows the comparison for a federal road a) and for 
a rough road b). The difference between the linear and the non-linear model is now 
more visible (between –20% to 20%).  

6.4 Summary of the significance of non-linear modeling to the objective 
function 
Let us now act all three cases at once. Again we will use the federal road (w=2, 

Guu(Ωx0) =4cm3, L=900m, ∆Ω=.01m-1) and the rough road (w=2, Guu(Ωx0) =64cm3, 

L=900m, ∆Ω=.01m-1). Our objective function is the sum of the normalized human 

a) b) 

a) b) 

linear 
R=10N 

R=50N 

R=100N 

linear 

Bump stop 



 

 

perception quantity and normalized distribution of the normal tire force. In Figure 9 the 
surface of the objective for the federal road a) as well the gradients b) of the surface are 
plotted. The same results are pictured in Figure 9 for a rough road c) and d). The 
gradients of the two surfaces are similar. The reason for the better coincidence of the 
results of the rough road is the linearization of the damper characteristics, which was 
done for the whole characteristics. For the rough road this condition is fulfilled better. 
For small friction the results are comparable with the results where only linear car-
model was used. For greater friction (50N) the objective function is distorted and the 
optimum would be found for less damping. 

 

 
Figure 8: Comparison of the influence of a non-linear damping to the perception 

quantity for a) a federal road (w=2, Guu(Ωx0) =4cm3) and b) a rough road (w=2, 
Guu(Ωx0) =64cm3). 

 

 
Figure 9: Comparison of the influence of the non-linear elements to the ride 

comfort objective for a variation of the carrying stiffness and scaled non-linear 
damping. a) Federal road (w=2, Guu(Ωx0) =4cm3) b) the according gradients of the 
objective surface (red non-linear, blue linear) c) rough road (w=2, Guu(Ωx0) =64cm3) d) 
the according gradients of the objective surface (red non-linear, blue linear)  

a) b) 

a) b) 

c) d) 



 

 

7 Summary 
In the paper the influence of the components non-linearities on the optimization of 

the ride comfort of a quarter car model was studied. The results of a numerical 
integration for a linear model were validated with the results of a frequency domain 
solution. Considered the Nyquist rule for the sampling theorem for the integration as 
well as for the road generation the results are suitable for further investigations. Several 
methods for evaluating the human comfort perception quantity were cited. They are 
different in evaluation of the absolute value of the perception quantity, but are very well 
comparable for the optimization of the ride comfort. We then introduced main non-
linear properties of the vertical car dynamics to the linear model. Modifications of the 
non-linear parameters were so applied, that the linearized model was comparable with 
the already introduced linear model. A sum of the normalized human perception 
quantity and the normalized normal tire force distribution was used as the objective 
function. For a medium non-linear behavior, which can be supposed for ride comfort on 
civil roads, the qualitative characteristics of the optimization surface are comparable 
with the corresponding characteristics of the linear model.  
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