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Abstract:. Soft impact oscillator with one degree of freedom containing soft stop is 
considered. Ways of the system to a chaotic motion are dealt with. Various ways to this 
regime are presented with corresponding examples and commented in this contribution.  
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1. Introduction 

Ways to chaos of the single degree of freedom (SDOF) oscillator with Kelvin-Voigt 
impact model (Fig. 1) investigated by means of numerical simulation are dealt with in 
this contribution. Non-linearity is caused by impacts of mass m against the soft stop 
situated in a static distance r, while excited by harmonic force F0 cos ωt drives the 
system to different regimes characterised by impact number z=p/n due to changes of 
parameters r, ω.   The NON-1-SIM program (Černá, Čipera and Peterka 1995) was used 
for analysis. 
 

Figure 1. Scheme of the SDOF system with soft impact 
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2. Mathematical model 

The motion of the mechanical system in Fig. 1 is described by one of two dimensionless 
differential equations: 

X''+ 2 β 1 X'+X = cosητ   for X < ρ ,        (1) 

X''+ 2 β 2 X'+ X +
k
k

2

1

(X- ρ ) = cosητ   for X > ρ ,        (2) 

where τ = Ω t, mk1=Ω , η= Ω/ω , β 1 = b k m1 12 , 2β = mkb 12 2 , ρ  = stxr , 
X= stxx  x st = F k0 1  are dimensionless time, excitation frequency, viscous damping, 
static clearance and displacement. The investigated system has stiffness ratio 

13/ 12 =kk  and damping 0375.01 =β , 1727.02 =β . 

Three types of bifurcation were found in the impact oscillator: 

1) Period doubling – a sequence of periodic motion bifurcation (Feigenbaum’s 
cascade) where period doubling occurs. The eigenvalue for critical stability point is 

1−=λ . 

2) Saddle-node bifurcation has he eigenvalue of stability critical point is 1=λ . 
(described in (Whiston 1987) in more detail). 

3) Gazing bifurcation – a new impact occurs due to new grazing between mass and the 
stop during the motion period. 

 3. Investigation results 

 
(a)      (b) 

Figure 2. (a) Scheme of the rigid and soft impact oscillator parametric subspace ρη ×  map 
(b) Global parametric subspace ρη ×  map for soft impact oscillator 
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Soft and strong impact phenomenon introduced in (Peterka 2001) causes particular 
topology in state subspace ρη × . The following rule can be stated while rigid impact 
oscillator is considered: Suppose grazing and stability boundaries intersecting in the 
parametric subspace ρη ×  (see continuous and dashed line and points X in Fig. 2). 
Then period doubling occurs in the interval when stability boundary course is inside 
z=1/1 motion area. Subharmonic and chaotic motions lie between these boundaries. 
Hystereses occur while an inverse topology.  

However these motions topology creates separated islands in parametric space while 
soft impact oscillator is considered and don’t reach the intersections (see continuous 
line and points X in Fig. 2). Contrary to rigid impact oscillator, where transition cross 
the grazing boundary is unstable but the points X, it is stable while soft impact oscillator 
behaviour is considered. 

Ways to chaos 

a) Feigenbaum cascade of period doubling 

This way was found in motion z=2/2 hysteresis area to non-impact regime for 7.0=η  
(area A in Fig. 2, detail in Fig. 3). The impact number z is not affected by this process.  

While a system behaviour in parametric subspace is considered, the solutions 
properties are given by mutual bifurcations topology. When one solution area lies 
inside another one, the inner area solution is given by properties of all areas inside it 
lies, then. 

 
Figure. 3. Chaos developing by Feigenbaum bifurcation cascade 

b) Feigenbaum period doubling cascade interrupted by grazing bifurcation 

This way is known from the rigid impact oscillator behaviour, e.g. sub-harmonic 
resonances. The impact number z is affected in this case. The cascades with grazing and 
period doubling alternation were found in some cases of parameters variation for 
increasing static clearance at very slight damped system (area A and D in Fig. 2, Fig. 4 
and 5). 
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Fig. 4 shows a complicated area in the frequency interval ( )88.0,81.0∈η . The chaotic 
regime occurs by interrupted Feigenbaum cascade from motion z=3/4 while parameter 
ρ  is increased or parameter η  is decreased. The motion z=3/4 can be set either from 
the motion z=1/2 cross the z=2/4 motion while parameter ρ  is increased (i.e. cross PD 
and G boundaries), or from the motion z=2/2 cross the z=4/4 motion while parameter η  
is decreased (i.e. cross PD and inverse G boundaries). Comparing to the SDOF rigid 
impact oscillator, the areas of motions z=p/n move for n>2 to the smaller values of non-
dimensional static clearance ρ . Motion with n=3 can be identified only after the 
transient effect induced e.g. by jump in parameters. Chaos at the area F in Fig. 2 (Fig. 7) 
has the same developing scheme. 

Figure 4. Chaos developing by interrupted Feigenbaum cascade and higher order subharmonic 
motions 

 

 
Figure 5. Chaos between motion z =2/1 and z =1/1 areas 

c) Interruption of saddle-node instability development 
Hysteresis area boundary (e.g. motion z=4/3 hysteresis area in Fig. 5) occurs in a tiny 
area inside more complicated structure. 
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Figure 6. Chaos between motions z =2/1 and z =1/1 areas Poincare map (Fig. 5) 
 

Chaos of this system in Poincaré map has particular features in the most of cases. The 
ρ=X  section at the parametric plane −'X , ϕ  (i.e. motion velocity and phase at the 

beginning of the penetration) was chosen for mapping. Fig. 6 shows chaos in the area 
between motions z =2/1 and z =1/1 developing via period doubling Feigenbaum 
cascade interrupted by grazing bifurcations (Fig. 5). This case is an example of the 
scheme (Fig. 2 a) while a basic multi-impact motion is considered. However, the 
Poincaré map of chaotic area for small ρ  has another appearance (Fig. 8). Chaotic areas 
are parts of a complicated structures, which modified slightly compared to the rigid 
impact SDOF oscillator. 

(a) (b) 

Figure 7. Phase trajectories (a) and time series (b) of the chaotic motion at point 9558.0=η , 
01.0=ρ  of the area F in Fig. 2 
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Figure 8. Chaos at motion z =1/1 area for  parameters 9558.0=η , 01.0=ρ  at the area F in 
Fig. 2 - Poincare map  

5. Conclusion 
Basic schemes of ways to chaos (Peterka, Kotera 1996) were found in the behaviour of 
the SDOF oscillator with Kelvin-Voigt impact model. Five large chaos areas arising by  
three different ways were found and two phenomena of soft impact oscillator motion 
were stated. Group of higher harmonic motion, which can to be set by only a tiny initial 
condition interval (achieved e.g. by a transient effect), cannot be simply dealt with by 
the following the presented mechanisms. 
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