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Abstract 
The topic of this paper is a computer simulation of treatment of children spine deformities with 
braces (orthosis). Orthopaedists in the Czech Republic use corrective braces of type Cheneau or 
Cerny. The brace has force effects on a child skeleton. First, the negative plaster form of a child 
trunk is made and then the positive plaster form is created. The orthopaedist determines the 
loading place and the plaster form is deepened in this place. The laminate brace made according 
to this plaster form pushes the child trunk (like a tight shoe). 

The research is supported by a grant of the Czech Grant Agency No. 106/00/0006 “Functional 
Adaptation and Pathobiomechanics of Limb and Axial Skeleton under Force Effects“. The paper 
shows the manner of determination of the stress state in vertebrae and inter-vertebra discs and the 
solution of the spinal curve correction under brace force effects for a concrete child patient. The 
project searches the dependence of the activation and velocity of the spinal curve correction in the 
spinal stress state for many patients. It means that the paper shows the computing algorithms for 
spinal deformations and the stress state under brace force effects and the simulation of the spinal 
curve correction. 

Louis’s model of the spine is used. The breast curve classification can be used according to King. 
Note that the brace of type Chenau is recommended for the spinal curve type King I, II, and IV and 
the brace of type Cerny for the spinal curve of type King II, III a V.  

The spinal deformations are solved by the finite element method as a beam (spine) in an elastic 
ground (soft tissue) loaded by given displacements or by the finite element method using 
vertebrae, inter-vertebra discs and soft tissue elements. The 1st method is described in the article. 

The calculation algorithm and parameters are verified with treatment courses. The sensor plates 
put into braces have measured the load values between the brace and the child trunk surface. The 
simulation program assesses the spinal curve correction according to the spinal stress state and 
the time for which the brace has been used.  

Key words: biomechanics, simulation of treatment, scoliosis, spine stress state, spine 
remodelling 
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1 Introduction 
Spinal corrective braces (see fig. 1) are used for treatment of spine scoliosis of children 
(pathologic deformation of the chest curve). The X-ray of the patient from fig. 1 without 
and with the brace is shown in fig. 2. The dynamic corrective braces of type Cheneau or 
according to Cerny’s patent No. 281800CZ (see fig. 1) are usually used in the Czech 
Republic. The breast curve can be classified according to King. The brace of type 
Chenau is recommended for the spinal curve of type King I, II, and IV and the brace of 
type Cerny for the spinal curve of type King II, III a V. 
 

 

Fig. 1. Patient without and with the dynamic corrective brace according to Cerny’s patent  No. 
281800CZ. 

 

The brace pushes the child trunk and makes a stress state in the patient’s spine. The 
brace changes the spinal curve; it means that the spinal pathologic form is corrected. 
After a long–term use of the brace, the part of spinal correction is permanent. The brace 
is made in the following manner: first, a plaster negative form and then a positive form 
of the child trunk are made. The orthopaedist’s assistant according to his experience and 
the orthopaedist’s recommendation deepens the plaster positive form in the place where 
the brace has to push on the child’s trunk. The plastic brace is then made according to 
this plaster form. After its application on the child trunk the brace pushes the places 
where the form has been deepened (the tight shoe principle). 

If computer search is not used, the brace force effect is the result of the orthopaedist and 
his assistant’s experience only and it does not ensure that the designed brace form and 
the manner of treatment are optimal. The paper shows computer algorithms which is 
able to determine the stress state in vertebrae and inter-vertebrae discs and spinal curve 
changes for the concrete brace applications. The theoretical conclusions are made 
according to many treatment courses. The remodelling of the spine pathologic curve 
depends on a spine stress state, time and manner of the brace application. The treatment 



 

 
 

course is simulated on the computer. The aim of the research is the determination of an 
ideal brace form and a treatment course with the help of computer simulation. The 
computer program calculates the spine stress state and its curvature changes at each 
time point. The treatment simulation is now provided contemporaneously with the 
patient’s cure and the computer model is verified. If the computer model and treatment 
reality will have the same behaviour, then the model can be used for the treatment 
prognosis in the orthopaedic praxis. Since the treatment course takes a long time, the 
simulation model is still verified so that its prognoses can be as precise as possible.   

 
Fig. 2. The frontal X-ray of the patient from fig.1 without and with the corrective brace. 
 
2  Spinal Curve 
 
The task is solved using Cartesian coordinates (x – spine axis direction, y,z –  frontal 
and sagital plane). The spinal curve is stored in the computer as the following 3 
functions 

                                                y = y(x),  z = z(x), ϕ = ϕ(x),                                       (1) 

 



 

 
 

where ϕ  is the turning according to the x-axis. The spinal curve can be described if the 
extreme values of y and/or z are measured from X-ray (the extremes of the yellow curve 
in the left X-ray in fig.2). The method is applied for the frontal and sagital plane, too. 
The spinal curve has 3 extremes of coordinates maximum. The curve is divided into n 
sectors between the coordinate beginning, extremes and the end point, respectively 
(max. n is 4). The extreme coordinates xi, yi, i=1,…,n-1 and the coordinate xn of the 
spine end (spine length where  xn = 0) are measured by X-ray (see fig 2). The length of 
segment i is 

li = xi – xi-1,. 

The local coordinate ξ  is considered from the beginning of segment i. The function y is 
considered as polynomial. It is for the 1st segment (quadratic polynomial function) 
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Fig. 3. Inter-vertebrae disc and lignums. 

 
The function values on the segments i - 1 and i boundary are equal to yi and their 
derivates equal zero. The same approximation can be used for z coordinate. The 



 

 
 

functions y,z describe the spine initial position which is changed in each iteration step. 
The deformations of the spinal curve in the vertebrae centres as a force effect of the 
brace are added to the spine position from the last iteration step.  
 
2 Deformation of the Spinal Curve 
 
The inertia moment has to be determined for an inter-vertebrae disc and lignums cross-
section area (see fig. 3). The calculation procedure is as follows: the cross-section area 
is divided into triangles and one third of triangle areas are concentrated to their side 
centres. 

The spine is solved as a beam in an elastic basis and the finite element method 
(deformation variant according to Lagrange principle) is used for the stress state 
calculation. It is supposed that the vertebrae have no deformation. The potential energy 
is calculated for the inter-vertebrae discs volume and for the pressed soft tissue region 
of a child trunk. The width of the soft tissue is for simplification considered constant 
(rectangle cross-section of the trunk). The displacements and turning at vertebrae 
centres are kinematic unknowns: 
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where ϕx are turnings according to the spine axis. The following algorithm is valid for 
the frontal and sagital planes, the planes will not be indicated by the plane index. 
The stiffness matrix for the spine part between the centres of neighbouring vertebrae is 
(torsion and beam influences) 
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The sub-matrixes will be determined separately for deformation of the spine and for soft 
tissue. 
 
3.1  Deformation of Inter-Vertebrae Discs 
 
The beam and torsion stiffness is  

l
EIk 2= ,   

l
GIt T= , 

where E,I  are the modulus of elasticity and the moment of inertia of a cross-section of 
the inter-vertebrae disc and lignums (see fig. 3) and l is the thickness of the disc. The 
torsion influence is: 
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The influence for R - forces (moments) and r  - movements (turns) on inter-vertebrae 
disc boundaries are 
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Fig. 4. Spine deformation is linear in the vertebrae parts and curve-linear in the inter-
vertebrae disc part. 

 
Let the boundary forces Zi, Mi, Zi+1, Mi+1 and kinematic unknowns wi,ϕI, wi+1,ϕI+1 be 
transformed from vertebrae centres to values 1111 ,,,,,,, ++++ iiiiiiii wwMZMZ ϕϕ  at disc 
boundary points (see fig. 4). As there is no deformation between the vertebrae centre 
and the inter-vertebrae disc boundary, the central spinal line is straight in this part, the 
spine movement w has a linear course in the part of length a, and the torsion moment Mx 
and turning ϕ, ϕx are invariable. 

                         aww iii ϕ−= ,  aww iii 111 +++ += ϕ , ii ϕϕ = ,  11 ++ = ii ϕϕ  ,            (7) 
                    aZMM iii += ,   aZMM iii 111 +++ += ,  ii ZZ = ,  11 ++ = ii ZZ .          (8) 

Let us put (7), (8) to (5) 

                                      







































−

+=





















−

+
+

+ 0

0
0

0

1
2

2

1

2
i

i

i

i

a

a

rK

aZ

aZ
R

ϕ

ϕ

.                                (9) 

The formula (9) can be written 

                                                            R2 = K2r2  ,                                                   (10) 

where K2 is the stiffness matrix for vertebrae centres 
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The analogical formulas are valid for y axis direction. 
 
3.2  Pressed Soft Tissue (Elastic Ground) 
 
The pressed soft tissue of a child trunk round the spine is considered as an elastic 
ground according to [1] pp. 86 – 113 and the final formulas will be used here. The width 
of the ground is considered constant. Let us calculate the parameters  
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where EP , h, b are modulus of elasticity, thickness and width of pressed soft tissue. The 
torsion stiffness sub-matrix is: 
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The beam stiffness sub matrix is: 
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4  Spine Loading 

 
The brace pushes the trunk in the place, where the plaster positive form of the child 
trunk has been deepened; it means that the trunk surface (soft tissue surface) has the 
non-zero prescribed displacements in these places. Let us suppose that the prescribed 
displacement acts for a lying patient from the above and the z-axis direction is from 
below. The compression of the soft tissue part up the spine is  w0 – w and below it is w, 



 

 
 

where w is a spine displacement and  w0 is a prescribed trunk surface displacement. Let 
the matrixes Kabove, Kbelow be calculated according to formulas (12) for the trunk part 
above and below the spine. The potential energy of the soft tissue part is 

Ep = rT [Kabove (r0 – r) + Kbelow r] =  rT [Kabove r0 + (Kbelow – Kabove) r. 

The term  Kabover0  can be calculated and its negative form can be considered as a load 
vector (the right side of linear algebraic equations of the finite element method). In this 
way, the potential energy can be considered in compressed parts of soft tissue only; it 
means that the terms Kabove(r0 – r) and/or Kbelow r are considered only if they are 
positive. An iteration calculation is necessary for the correct results; it means that the 
load vector is calculated for the compressed soft tissue part above and/or below the 
spine according to the results from the last iteration step. 

The oblique load will be searched. Let y,z be coordinates of the point of the center, 
where the positive plaster form was deepened and let ∆  be the depth of how the plaster 
positive form has been deepened in perpendicular direction to the child trunk surface. 
Now, ∆ is a prescribed trunk surface displacement and y,z its coordinates (positive 
displacement is in direction from the trunk surface to the spine). Let us consider that the 
trunk transversal cross-section has a half elliptic form with radiuses a, b for z > 0 and 
a,b for z < 0. The following formulas can be written for the ellipse 
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If formula (13) is derived, angle ϕ of the tangent with axis y can be calculated; the 
negative value of angle ϕ  is the angle of the normal with z axis.  
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The prescribed surface displacements v0, w0  in y,z directions are 

         v0 = -∆ sin ϕ ,   w0 = ∆ cos ϕ . 

The problem can be solved in the plane x, y  or x, z with prescribed displacements v0 or 
w0 or more correctly as a space problem with a space spine and soft tissue elements. The 
stiffness matrix for the space spine element can be considered in the same way as the 
formulas (4), (5) and (11) but the matrix K2 (see (11)) has elements for the direction of 
axis y, too. As the vertebrae have no deformations, the kinematics variables at the 
vertebrae surface can be calculated from kinematic variables of vertebrae centres of 
gravitation (see (3)). The normal and tangential stresses on the boundary between a 
vertebra and an inter-vertebrae disc are then calculated from the resulting joint forces 
and moments. The normal force of the x-axis load has to be respected in the normal 
stress calculation, too, and the shear and torsion influence should be respected in the 
tangent stress calculation.  

The parameters and calculation algorithm are verified with values observed in the X-ray 
of a child with and without the brace, it means that the calculated function values y, z 
and y+v, z+w and their extremes are compared with the patient’s X-ray..  

 



 

 
 

 
 
 
5  Conclusion 

 
If the brace is removed from the child trunk after some time of application, then 

the spine does not return to its previous position, but the pathologic spine form is partly 
corrected. Many child patients have been observed within this project and the 
dependence between the spinal curve correction and the spine stress state and the time 
interval of the brace application are studied. The theoretical conclusions about the spine 
remodelling are searched. The computer simulation model and its parameters are 
verified to ensure that the behaviour of the model is the same as the child treatment 
course. Since the treatment takes a long time, the theoretical conclusion can be 
determined after a sufficient number of verifications between the observed treatment 
courses and their computer simulations. 
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