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Abstract: Two relatively independent areas of the gearing science have been distinctively outlined and 

considerably progressed in the last decade.  The “Theory of gearing” could be considered essentially as a 
kinematic theory of mechanisms for motion transformation with high kinematic joints by a defined law. This 
theory treats the common regularity and research methods of gear sets. The area “Geometrical theory of 
gears” observes the mathematical modelling of the concrete gear sets. This area also develops the methods 
for synthesis and generation of the active tooth surfaces. This study belongs to the second area of gear 
theory. It is dedicated to the analytical defining of conjugate tooth surfaces of a class of the spatial gear 
mechanisms, called spatial rack sets. They are designed to transform rotation into translation motion by a 
defined law. The rotation is realized by gear with helical teeth. In the most common case this gear has a 
conic form. And the translation is realized by rack with helical teeth. In this study the active tooth surfaces of 
the first link are linear conic helicoid, and the teeth surfaces of the rack are kinematically conjugate of the 
conic helicoid. The obtained equations are the basis for creation of the algorithms for synthesis and design of 
the spatial rack mechanisms.  
Key words: spatial rack set, synthesis, design, mathematical model 

1. Introduction 

The studies incompleteness of spatial rack mechanisms motivates authors of this work to 
do systematical investigations on these type mechanisms. The rack mechanisms are purposed for 
transformation of rotation into translation (R-T) by defined law of motion [1, 2, 3]. The spatial 
rack mechanism can be considered as a special case of a spatial three-link gear mechanism 
transforming rotation between crossed axes. In other word we can consider that the spatial rack 
mechanism is obtained from the skew-axes gear mechanism by increasing the teeth number of 
one gear to infinity without increasing the number of meshed tooth (high kinematic joints).  

The tooth link with a theoretically endless tooth number we call helical rack, and the link 
with a limited number of teeth is called helical wheel. In a common case the helical wheel has a 
conic form and the number of teeth is more then six. If the number of teeth of the helical wheel is 
less than six it is transformed into worm (conic or cylindrical). As a result of this change of the 
spatial three-link gear mechanism “rotation axis” of the link "helical rack" is placed to infinity 
and its rotation is transformed into translation.  
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2. Mathematical model of kinematic transformation of motion (R-T), by 
spatial rack mechanisms 

In Fig. 1 is shown the kinematic scheme of spatial rack set realizing a definite law 
of transformation of rotation into translation by contacting in line D12  tooth surfaces Σ1 and 
Σ2 [4]. The tooth surfaces Σ1 belonging to the link 1 rotates around axis 1-1 with angular 
velocity 1ϖ , and Σ2 belonging to the link 2-translates on the direction 2-2 with velocity 

2V . The axis of rotation 1-1 and the translation direction 2-2 are fixed, i.e. 
δ ϖ= ∠( ) =1 2, .V const  The realized transformation of the type (R-T) from this mechanism is 
characterized by the following kinematic regularity: 

j V const12 1 2= =ω .,        (1) 
where 

1
ω is absolute value of the angular velocity vector 1ϖ ; 

2
V is absolute value of the 

translation velocity vector 2V . 

 
Fig. 1 Kinematic scheme of spatial rack set 

 
The spatial rack mechanism studied in this article has a helical wheel of a type conic 

worm which active flanks Σ1 are conic linear helicoid [5] and the tooth surfaces Σ2 of 
helical rack are envelopes of the flanks Σ1. The kinematic scheme shown in Fig. 1 of the 
spatial rack mechanism is related to the considered mathematical model. The equations of 
tooth surfaces Σ1 and Σ2 are written by means of following the right-hand orthogonal co-
ordinate systems: S O x y z( ), , ,  – firmly connected with a mechanism posture; 
S O x y z1 1 1 1 1( ), , , – firmly connected with link 1 (a conic worm) and S O x y z2 2 2 2 2( ), , ,  – 
firmly connected with link 2 (a helical rack).  
 The kinematic conjugation of the joint Σ1:Σ2 requires the geometric elements (i.e. 
the tooth surfaces Σ1 and Σ2) to be analytically described by continuous functions and have 
continuous derivatives in first order [6, 7]. Additionally, it is required Σ1 and Σ2 to have 
one conjugate point at least. The kinematic conjugation of the joints Σ1:Σ2 suppose the 
motion transformation from the geometric element Σ1 to the geometric element Σ2. In the 
concrete case of spatial rack mechanism the following specific restrictions concerning tooth 



 

 

surfaces Σ1 and Σ2 are imposed: representing the contact at one conjugate point P  at a 
given moment as a contact between two infinitely small particles of Σ1 and Σ2, which lie in 
a common tangent plane to the Σ1 and Σ2 (Fig. 1). It is evident that these areas have a 

relative sliding which is performed with a velocity vector 2112 VVV −= . 12V lies in the 
tangent plane. The relative velocity vector 12V in every common contact point P  from 
contact line D12  of the Σ1 andΣ2 in the co-ordinate system S O x y z( ), , , is: 
 kcosjj)xsinj(iyV δδ

212112 ++−= .     (2) 

The vector equation (2) is written when 1
1

=ω rad/s and 
21121

2
jjV ==  respectively. 

3. Synthesis of tooth surfaces Σ1 and Σ2   

3.1. Geometry of conic convolute and involute helicoids 

In Fig. 2 is shown one possible case of the generated right-hand conic convolute 
helicoids Σ( )j  ( )j = 1 2, . The process of generating of these helical surfaces is examined in 
the static co-ordinate system S O x y zj j j j j

1 1 1 1 1
( ) ( ) ( ) ( ) ( )( ), , , .  

The generatrix L j( )  doesn't intersect axis O zj j
1 1
( ) ( ) , which coincide with the 

geometric axis of the conic worm. The angle 0 5, π ξ π< <( )j  is between L j( )  and the 

direction of the axis O zj j
1 1
( ) ( )  (geometric axis of the worm). Also L j( )  belongs to the plane 

T j( ) , which is tangential to the directed circle cylinder C j( ) . The conic convolute helicoid 
Σ( )j  ( )j = 1 2,  generates form L j( ) , which performs complex motions consisting of [5]: a) 

helical motion along the axis O zj j
1 1
( ) ( )  with a parameter ps

j const( ) = .; b) translation 

perpendicular to the axis O zj j
1 1
( ) ( )  with a parameter p j

t
( ) in the plane T j( ) . The value of 

p j
t
( ) is in relation with the conic form of the conic worm. Σ

1
( )j  ( )j = 1  is a conic convolute 

helical surface, which is turned to the positive direction of the axis O z
1
1

1
1( ) ( ) , and Σ

1
( )j  

( )j = 2  is a helicoid, which is turned to the negative direction of the axis O z
1
2

1
2( ) ( ) . 

Particles of Σ
1
1( ) and Σ

1
2( )  are used as a active surfaces of the conic worm teeth. 

The vector equation of the conic convolute helical surface Σ
1
( )j , according to Fig 2 is 

 ρ
1 0
( ) ( ) ( ) ( ) ( )j j j j jr s t u= + ++ ,      (3) 

where ρ
1
( )j is radius - vector of point N j( )  belonging to conic convolute helicoid; r j

0
( ) - 

radius-vector of the directed cylinder; u j j( ) ( ), ϑ - curvilinear co-ordinates of helical 



 

 

surface; s j p s
j j( ) ( ) ( )= ϑ  - axial location moving of generatrix L j( ) ; t j p t

j j( ) ( ) ( )= ϑ  - 

tangential moving of generatrix L j( ) . 

 
Fig. 2 Scheme of conic convolute (involute) helicoid generation 

 
In the co-ordinate system S O x y zj j j j j

1 1 1 1 1
( ) ( ) ( ) ( ) ( )( ), , ,  for (1) it is obtained: 

 

x r j u j j p j j j

y r j u j j p j j j

p j j u j j

j j

j j

z j

t

t

s

1 0

1 0

1

( ) ( )

( ) ( )

( )

( ) ( ( ) ( ) ( ) ( ) ) ( )

( ) ( ( ) ( ) ( ) ( ) ) ( )

( ) ( ) ( ) ( )

= ± −

= −

= ±

cos sin sin ,

sin cos ,

cos .

sin

ϑ ξ ϑ ϑ

ϑ ξ ϑ ϑ

ϑ ξ

m    (4) 

For the system of equation (4) upper signs and j=1 are referred to the Σ
1
1( ) ,  j=2 and the 

following signs are referred to Σ
1
2( ) . Substituting bellow expressions (5) into equations (4) 

 R u pt
j j j p p pj j j

s
j

t
j j

0 1
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ,= − = ±ϑ ξ ξsin cot .  (5) 

we obtained: 

x r j R j j

y r j R j j

p j R j

j j j

j j j

z j j j

1 0 0

1 0 0

1 1 0

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

= ±

=

= ±

cos sin sin ,

sin cos ,

cos .

sin

ϑ ξ ϑ

ϑ ξ ϑ

ϑ ξ

m      (6) 



 

 

Equations (6) represent a conic convolute surface Σ
1
( )j as a cylindrical convolute surface, 

with helical parameter p j
1
( )  and curvilinear co-ordinates ϑ ( )j and R j

0
( ). The point K j( )  is 

the accounting origin of co-ordinate R j
0
( ) (K j( )  is a point of intersecting of the L j( )  and 

the generatrix of the directed circle cylinder C j( ) ; C j( )  and planeT j( )  are contacting in this 
generatrix). This point K j( )  is considered as a point from the directed helical line 

ρ ρ ϑ0 0
( ) ( )

( ( ) )
j j j=  on the C j( ) . Let we present equation (6) in the following type [5]: 

ρ ϑρ

ρ

ρ

ρ

ϑ

ϑ

ϑ

ξ ϑ
ξ ϑ

ξ

1 0

0
1

0
1

0
1

0

0

1

1

1

1

0
( ) ( ) ( ( ) ) ( )

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

( ) ( )

( ) ( )

( )

( )j j j j l

j

j

j

j j

j j

p j j

l j

l j

l j

j j

j j

j

R

r

r

j

x

y

z

x

y

z

=

= =
±

±

+ ,

cos

sin ,
sin sin
cos cos

cos
,

,

,

,

m
   (7) 

 
where l

j( )
is the vector of direction of L j( ). 

Then for the parameter of distribution of the conic convolute helicoid Σ
1
( )j  we can write: 

 h d l dl d lj j j j j
1 0

2( ) ( ) ( ) ( ) ( )[ ]= ρ , , .     (8) 
From (7) and (8) after transformation is obtained: 
 h p rj j j j

1 1 0
( ) ( ) ( ) ( )= + cot .ξ        (9) 

Equations (4) and (6) describe the geometry of the conic convolute helicoid in the most 
common case, when h j

1
0( ) ≠ . If h j

1
0( ) = , i.e. 

 cot .ξ ( ) ( ) ( )j j jp r= −
1 0

       (10) 

Σ
1
( )j  transforms in conic involute helicoid. j = 1 , and upper signs in all equations and in 

further equations are referred to the active surface Σ
1
1( )  which rotates with the angular 

velocity 1ϖ  and the corresponding translation velocity of Σ
2
1( )  is 2V  (see Fig. 1); j = 2  and 

the lower signs are referred to those meshed surfaces Σ
1
2( ) and Σ

2
2( )  which velocities are  

(- 1ϖ ) and (- 2V ). 

3.2. Geometry of the conic Archimedean helicoid 

We will examine the synthesis of the active flanks Σ
1
( )j  (j=1, 2) of an Archimedean 

conic worm with right-hand threads. The process of generation of Σ
1
( )j  is shown in Fig. 3. 

In the case Σ
1
( )j  is an Archimedean conic helicoid which generatix L(j) is a straight line 



 

 

intersecting the axis O zj j
1 1
( ) ( ) , i.e. r j

0
0( ) =  ( L(j)lies in the plane A j( ) ). π ξ π2 < <(j)  is 

the angle between L(j) and the direction of the axis O zj j
1 1
( ) ( ) . The generatix L(j) performs a 

complex motion, as it is in generation of the conic convolute helicoid. 

 
Fig 3 Scheme of conic Archimedean helicoid generation 

 
Then the vector equations of the conic Archimedean helicoid Σ

1
( )j  and their 

analytical form in the system S O x y z1 1 1 1 1( ), , ,  firmly connected with the conic worm, 
respectively are:  

 ρ1
(j) (j) (j) (j)= + +s t u  ,       (11) 

 
x j u j j p

t
j j j

y j u j j p
t

j j j

z j p
s

j j u j j

1

1

1

( ) ( ( ) ( ) ( ) ( ) ) ( )

( ) ( ( ) ( ) ( ) ( ) ) ( )

( ) ( ) ( ) ( ) ( )

= −

= −

= ±

sin cos ,

sin sin ,

cos .

ξ ϑ ϑ

ξ ϑ ϑ

ϑ ξ

     (12) 

 



 

 

x R

y R

z p j R

j j j j

j j j j

j j j j

1 0

1 0

1 01

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

=

=

= ±

sin cos ,

sin sin ,

cos .

ξ ϑ

ξ ϑ

ϑ ξ

      (13) 

3.3. Geometry of the helical rack tooth surfaces 

In the case of spatial rack set the equations of the helical rack tooth surfaces Σ2
(j)  

(j=1, 2) are written by using the equations of their kinematic conjugate conic linear 
helicoids Σ1

(j)  (j=1, 2) belonging to the conic worm. When synthesizing conjugate active 
flanks of spatial gear mechanism the well known in the gearing theory a basic equation of 
meshing is applied [7]. This method is based on the regularity that the relative velocity in 
every pitch contact point of conjugate tooth surfaces Σ1

(j)  and Σ2
(j)  in every mesh moment 

lies in their common tangent plane. Analytical description of this statement is defined as 
the equation:  

n V n n n
j j j j

x
V

x y
V

y z
V

z
f u j j j

1 1 12 1 12 1 12 1
012

( ) ( ) ( ) ( ) ( ) ( ) ( ).
, , , , , ,

( , , )= + + = =ϑ ϕ .  (14) 

The relation (14) is known as the basic equation of meshing. Here n j

1
( )  is the normal 

vector to Σ1
(j) ; 12V is the defined with equation (2) relative velocity between Σ1

(j)  and Σ2
(j)  

in the random contact point; ϕ
1
( )j  is the parameter of meshing. 

 Following the kinematic method, we determine the equations of the mesh region, as 
a locus of the contact lines of Σ1

(j)  and Σ2
(j)  in the static space.  

Then  
 n

j j
u j j j

1 1 1 1 1
( ) ( ) ( ) ( ) ( )= ×∂ ρ ∂ ∂ ρ ∂ϑ .      (15) 

Let we write (15) in co-ordinate system S O x y zj j j j j
1 1 1 1 1
( ) ( ) ( ) ( ) ( )( ), , ,  for cases of the conic 

convolute helicoid, conic involute helicoid, and conic Archimedean helicoid. Then from the 
systems of equations (4) and (5) for the normal vectors of these surfaces we derived 
respectively: 
- for conic convolute helicoid (h j

1
0( ) ≠ ) 

 

n h U

n h j U j

n U

x
j j j j j j j

y
j j j j j

z
j j j

1
1

1

1
1

1

1
1

,

,

,

sin cos cos sin ,

sin sin cos cos ,

sin ,

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

= −

= +

=

m

m

ξ ϑ ξ ϑ

ξ ϑ ξ ϑ

ξ

   (16) 



 

 

 - for conic involute helicoid (h j
1

0( ) = ) 

n U

n U j

n U

x
j j j j

y
j j j

z
j j j

1
1

1
1

1
1

,

,

,

cos sin ,

cos cos ,

sin ,

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

= −

=

=

ξ ϑ

ξ ϑ

ξ

      (17) 

- for conic Archimedean helicoid (r j
0

0( ) = ) 

n p U

n p U

n U

x
j j j j j j j

y
j j j j j j j

z
j j j

1
1

1

1
1

1

1
1

,

,

,
,

sin sin cos cos ,

sin cos cos sin ,

sin

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

=

= −

=

ξ ϑ ξ ϑ

ξ ϑ ξ ϑ

ξ

m

m    (18) 

when )()()()()( jj
t

jjj psinuU ϑξ −= . 
Using the transition matrix from a system S1 to S :  

M
SS

j j

j j

1

1 1 0 0

1 1 0 0

0 0 1 0
0 0 0 1

= −

cos sin

sin cos

ϕ ϕ

ϕ ϕ

( ) ( )

( ) ( )
, L

SS

j j

j j

1

1 1 0

1 1 0

0 0 1

= −

cos sin

sin cos

ϕ ϕ

ϕ ϕ

( ) ( )

( ) ( ) . 

For the equation of the mesh region is obtained:  
-for spatial convolute rack mechanism 

 

y j n
x
j x j j n

y
j j n

z
j

x j j j j U j j j

y j j j j U j j j

z j p j j U j j

n
x
j h j j j

r

r

( ) ( ) ( ( ) ) ( ) ( )

( ) ( ) ( ( ) ( ) ) ( ) ( ( ) ( ) ),

( ) ( ) ( ( ) ( ) ) ( ) ( ( ) ( ) ),

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ( )

.
,

sin
,

cos
,

,

cos sin

sin cos

cot ,

,
sin sin

1 21 1 21 1
0

1 1

1 1

1

1 1

0

0

− + + =

= − ± −

= − −

= ±

= +

δ δ

ϑ ϕ ϑ ϕ

ϑ ϕ ϑ ϕ

ϑ ξ

ξ ϑ

m

m ϕ ξ ϑ ϕ

ξ ϑ ϕ ξ ϑ ϕ

ξ

1 1

1 1 1 1

1

( ) ) ( ) ( ) ( ( ) ( ) )

( ) ( ) ( ) ( ( ) ( ) ) ( ) ( ) ( ( ) ( ) )

( ) ( ) ( )

j U j j j j

n
y
j h j j j j U j j j j

n
z
j U j j

− +

= ± + + +

=

cos cos ,

,
sin cos cos sin ,

,
sin ,

  (19) 

  
 
 



 

 

-for spatial involute rack mechanism 

y j n
x
j x j j n

y
j j n

z
j

x j j j j U j j j

y j j j j U j j j

z j p j j U j j

n
x
j U j j j

r

r

( ) ( ) ( ( ) ) ( ) ( )

( ) ( ) ( ( ) ( ) ) ( ) ( ( ) ( ) ),
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ( )

.
,

sin
,

cos
,

,

cos sin

sin cos

cot ,

,
cos cos

1 21 1 21 1
0

1 1

1 1

1

1

0

0

− + + =

= − ± −

= − −

= ±

= − +

δ δ

ϑ ϕ ϑ ϕ

ϑ ϕ ϑ ϕ

ϑ ξ

ξ ϑ ϕ

m

1

1 1

1

( ) )

( ) ( ) ( ) ( ( ) ( ) )

( ) ( ) ( )

j

n
y
j U j j j j

n
z
j U j j

,

,
cos sin ,

,
sin ,

= +

=

ξ ϑ ϕ

ξ

    (20) 

-for spatial Archimedean rack mechanism 

y j n
x
j x j j n

y
j j n

z
j

x j U j j j

y j U j j j

z j p j j U j j
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x
j p j j j j U j j j j
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y
j

( ) ( ) ( ( ) ) ( ) ( )
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,
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,
sin sin cos cos ,

,

1 21 1 21 1
0

1

1

1
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1

− + + =
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= −

= ±

= − −

= −

δ δ

ϑ ϕ

ϑ ϕ

ϑ ξ

ξ ϑ ϕ ξ ϑ ϕm
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n
z
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1 1 1

1
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sin cos cos sin ,

,
sin .
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ξ

− −

=

m

  (21) 

The sets (19), (20) and (21) describes the locus of the contact lines between Σ1
(j)  and 

Σ2
(j)  in the static space. The active flanks Σ2

(j)  (j=1, 2) is received as locus of the contact 
line D12 in the co-ordinate system S2:  

f u u

M M M M

j j j j j j j

j
S S

j
S S S S SS

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

, , , , ,

, . ,

ϑ ϕ ρ ρ ϑ

ρ ρ

1 1 1

2 2 1 1 2 1 2 1

0= =

= =
    (22) 

M
S S

j j

j j
2

1 0 0 0
0 1 0 21 1
0 0 1 21 1
0 0 0 1

=
− ϕ δ

ϕ δ

( )

( )

sin

cos
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Conclusion 
 The equations of the active tooth surfaces of spatial convolute, involute and 
Archimedean rack sets obtained in the article represent the base of the algorithm for 
synthesis and analyze of these class mechanisms. The analytical relations are very 
important for the geometrical and technological synthesis of the spatial rack mechanism. 
They have the important place for the design of the tools for gear cutting, and for 
constructing of the control equipment, in the generating process of the tooth surfaces. 
When synthesizing gear sets of the examined type it is exclusively essential to be pointed 
out the singular points in their mesh region. Moreover, the proportion of Σ

1
( )j  and Σ

2
( )j  are 

limited in the design process so that the singularity in the mesh region to be eliminated. The 
written relations in this study are oriented to solve problems of elimination of the singular 
points of the spatial rack mesh region 
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