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Summary: Passive vibration isolators of various kinds are used to reduce the 
transmission of vibrations. The paper describe the theoretical principles of the 
measurement for the determination of the most important quantities which govern the 
transmission of vibration through linear isolators. This paper shows the limitations of the 
methods which are used for application in practice. The results of the methods are useful 
for isolators which are used to prevent low-frequency vibration problems and attenuate 
structure-borne sound. 

1. Introduction 

Isolation and structural damping constitute the two most widely applicable means for the control of 
vibration or structure-borne sound, particularly in the audio frequency range. Vibration isolation in 
essence involves use of a resilient connection between a source of vibration and an item to be 
protected, so that this item vibrates less than it would if a rigid connection were used. In some typical 
situation the source consists of a vibration machine or structure and the item to be protected is a 
human being, environment, instruments, machines and so on. Many salient features of vibration 
isolation can be analysed in terms of a simple model consisting of a rigid mass that is connected to a 
support via a isolator and that is constrained to translate along a single axis. More complex models are 
needed to address situations where the magnitude of excitation depends of the motions, where an 
additional isolator-mass (spring-mass) system is inserted between the primary one and the support, 
and/or at comparatively high frequencies where the isolator mass plays a significant role or where the 
isolated items do not behave as rigid masses. Other complications arise because of non-uniaxial 
motions and nonlinearities. 

 

2. Dynamic transfer stiffness matrix of vibration isolators 

The dynamic transfer stiffness is determined by elastic, inertia and damping properties of the isolators. 
The reason for choosing a presentation of test results in terms of a stiffness is the practical 
consideration that it complies with date of static and/or low-frequency dynamic stiffness which are 
commonly used. The additional importance of inertial forces makes the dynamic transfer stiffness at 
high frequencies more complex than at low frequencies. Because at low frequencies only elastic and 
damping forces are important, the low-frequency dynamic stiffness is only weakly dependent on 
frequency due to material properties. In principle the dynamic transfer stiffness of vibro-acoustic 
isolators is dependent on static preload and temperature. 

A familiar approach to the analysis of complex vibratory systems is the use of stiffness − compliance − 
or transmission matrix concepts. The matrix elements are basically special forms of frequency-
response function; they describe linear properties of mechanical and acoustical systems. On the basis 
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of knowledge of the individual subsysten properties, corresponding properties of assemblies of 
subsystem can be calculated. The general conceptual framework for the proposed isolator 
characterisation is shown in figure 1. 

 

 

 

 

 

Figure 1. − Block diagram of source/isolators/receiver system 

A point contact is assumed at each connection between source and isolator and between isolator and 
receiver. To each connection point a force vector F containing three orthogonal forces and three 
orthogonal moments and a displacement vector u containing three orthogonal translational and three 
orthogonal rotational components are assigned. 

In figure 1 just one component of each of the vector F1, u1, F2 and u2 is shown. To show that the 
blocked transfer stiffness is suitable for isolator characterisation in many practical cases, the discussion 
will proceed from the simplest case of unidirectional vibration to the multidirectional case for single 
isolator as follows 

 F k u k u1 1 1 1 1 2 2= +, ,  (1) 

 F k u k u2 2 1 1 2 2 2= +, ,  (2) 

where  k11and k22 are driving point stiffnesses when the isolator is blocked at the opposite side. 

 k12 and k21 are blocked transfer stiffnesses. 

The matrix form of equations (1) and (2) is 

 F = [k] u (3) 

with the dynamics stiffness matrix 
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For excitation of receiving structure via the isolators 
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where kτ denotes the dynamics driving point stiffness of the receiver. 

From equation (2) and (5) it follows that 
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If k k2 2 0 1, ,≤ τ , then F2 approximates the so-called blocking forces to within 10 %, i.e. 

 F F k u2 2 2 1 1= =, ,blocking  (7) 
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Because vibration isolators are only effective between structures of relatively large dynamic stiffness 
on both sides of the isolator, equation (7) represents the intended situation at the receive side. 
Measurement of the blocked transfer stiffness for an isolator under static preload is easier than 
measurement of the complete stiffness matrix. Moreover it forms the representative isolator 
characteristic under the intended circumstances. 

If forces and motions at each interface can be characterised by six orthogonal components, the isolator 
may be described as a 12-port [3]. If the receiver has relatively large driving point dynamic stiffnesses 
compared to the isolator, the forces exerted on the receiver approximate the blocking forces given by 
equation (7). Therefore, the blocked transfer stiffnesses are appropriate quantities to characterise 
vibro-acoustic transfer properties of isolators, and also in the case of multidirectional vibration 
transmission. 

 

3. Energy dissipation and loss factor 

The damping capacity ψ of a vibrating system is defined as ψ = D/W, where D represents the energy 
that is removed from the system per cycle and W denotes the vibrational energy stored in the system. 
The loss factor η, defined by η = ψ/2π, represents the ratio of the energy removed per radian to the 
stored vibrational energy. In most practical situations the loss factors less than 0,2 and one may take 
the stored energy to be equal to the total vibrational kinetic and potential energy. In general, the 
various measures of damping are related to each other by 
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or at resonance 

 η ς= =2
1

Q
 (9) 

where ζ is damping ratio (viscous damping coefficient/critical damping coefficient) 

 Q quality factor. 

The phase angle φ by which the displacement of the mass of the isolator lags the excitation force may 
also be used to characterise the system’s damping. For example, at radian frequencies ω much below 
the system’s natural frequency tgφ = ki/k0. Where ki is the imaginary part of complex stiffness 

 k = k0 + jki. (10) 

This complex stiffness, which is equal to the ratio of the phasor of the applied force to that resulting 
displacement, characterizes both, the energy storage and energy dissipation of the system. 

For the purpose of the discussion it is sufficient to consider a single isolator with a single vibration 
direction. Because only measurements with a block output side are considered, the phasor equation (1) 
and (2) are reduced to 

 F k u1 1 1 1= ,  (11) 

 F k u2 2 1 1= ,  (12) 

At low frequencies, where inertial forces play no role, there is a simple relationship between the phase 
angle of the dynamic transfer stiffness and the damping properties of the resilient element and the 
frequency-dependent stiffness can be approximated by k k k≈ ≈1 1 2 1, , . 

This complex low-frequency dynamic stiffness can be written from equation (8) and (10) as 



 k k= +0 1( )jη  (13) 

The loss factor of a resilient element can be estimated according to 

 η φ≈ tg 2 1,  (14) 

where φ2,1 is the phase angle of the dynamic transfer stiffness k2,1. 

 

4. Conclusion 

The model shown in figure 1 and equation (1) to (7) is correct under the assumption that the isolators 
forms the only transfer path between the vibration source and receiver. In practice there may be 
mechanical or acoustical parallel transmission paths which cause flanking transmission. For any 
measurement method of isolator properties, the possible interference of such flanking with proper 
measurements has to be minimised. 

The measurement of small loss factors using equation (14), is extremely sensitive to phase 
measurement errors. For higher frequencies, where the approximations k k k≈ ≈1 1 2 1, ,  are no longer 

valid, it is no longer correct to use equation (14) as a characterisation of the damping properties of the 
resilient elements. 
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