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NUMERICAL SIMULATION OF WET AIR FLOW
WITH PHASE TRANSITION
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Summary: Two-phase flow in a partially closed nonadiabatic axisymmetric vertical chan-
nel is simulated by pressure relaxation technique. The lower end of the channel (cooling
tower) is located in a certain inlet height from the flat plate (ground). The injection of
cooling water caused the nonadiabatic character of the flow. The finite volume method is
implemented assuming a laminar and turbulent viscous incompressible flow with phase tran-
sition in a staggered grid arrangement. The main aspects analysed were: the stability of the
pressure-velocity coupling, the dependence on the grid size variation and on the variation of
the under-relazation parameters, and the droplet radius variation. The effects of the inlet
height and of the channel geometry (channel is taken as a rotational hyperboloid) on the
flow velocity and on the wet air transport can be discussed.

Introduction

The methodology to analyse two-phase flows is well based on that already tried for single-
phase flows. Basically three main types of assumptions have been made: (a) The homogeneous’
flow model, considered the simplest one, in this model the two-phase flow is assumed to be a
single-phase flow having pseudo-properties arrived at by suitably weighting the properties of
the indiviual phases. (b) The ’separated’ flow model in which the two phases of the flow are
artifically segregated, then two sets of equations for each phase can be written, one for each phase,
or alternatively the equations can be combined. In both cases information should be provided
about the transversal area (in a channel flow) occupied by each phase (or alternatively, about the
velocities of each phase) and about the frictional interaction betwen the phases. This information
is then inserted into the basic equations, either from separated empirical relationships in which
the void fraction and the wall shear stress are related to the primary variables, or on the basis
of simplified model flows. (c) The ’flow pattern’ model for which according to some previously
prescribed geometry the two phases of the flow are arranged. Then the basic equations are
solved within the correspondent idealised description.

Formulation

The governing equations for the flow of interest are described by the conservation laws for
mass, momentun and energy. The following set of equations are based on the two-dimensional,
laminar, axisymmetric, incompressible Navier-Stokes equations for a viscous Newtonian fluid:
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where the independent variables are specified in U, the fluxes in £ and F' respectively:
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where A® = ‘?927? + %%—? + %27%’, with the following material relations:

D =1.732 x 107971685 (4)
hey = 3.16 x 10° — 2.418 x 10°T (5)
P = pa+pv (6)
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Numerical method

The numerical simulation of the flow problem considered is based on the solution of the
equations describing the conservation of mass, momentum and energy in a control volume. The
volume considered is divided into a large number of small cells forming a grid. A FVM based on
the pressure correction procedures devised by Patankar [3] and others, and the SIMPLE scheme
(Semi-Implicit Method for Pressure-Linked Equations) are employed in the current simulation.
The main feature of the FVM is that it deals with a set of discretised equations in a conser-
vational form; furthermore, it employs an iterative solution strategy which results in a modest
requirement in memory usage. The FVM is very popular in solving Newtonian flow problems at
moderate to high Reynolds numbers. All of the governing equations can be written in the form
of a general transport equation (summation convention is assumed):
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where ® represents either the velocity components or the volume fraction. When equation (12)
II=1,T =0 and & = p, the equation of balance of air is recovered, when Il = p, I' = 7, and
® = u; one has the momentum equation in the i-direction, etc.



NOMENCLATURE

cva specific heat of dry air = 719.63 [J - kg 1 - K 1]
cyy  specific heat of steam = 1460 [J - kg~ ! - K 1]
D diffusion coefficient [m? - s71]
e internal energy [J - kg ']
hey evaporation heat [J - kg™
pus saturation pressure of water [Pal
M amount of cooled water in 1m? [kg-m~
M, molecular mass of dry air = 28.964 [kg - kmol ]
M, molecular mass of water vapor = 18.015 [kg - kmol ']
ng droplet density [m 3]
pressure [Pa]

rq droplet radius [m]

R universal gas constant = 8314 [J - kg~! - K71]

p total density [kg - m™3]

pa density of dry air [kg-m 3]

pp  density of water vapor [kg - m ™3]

pe density of water = 103 [kg - m™3]

Tp reference temperature = 273.15 [K]

T temperature [K]

v, velocity in the radial direction [m - s7!]

v, velocity in the axial direction [m - s !]

w evaporation rate [kg-m™3 - s71]

’]

Integrating the general transport equation over a finite volume V with bounding surface A,
and applying the divergence theorem whenever needed, we get
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The computational domain is now discretised into finite volumes on which the field variables are
assumed to be piecewise constant. The integrations can now be performed numerically, and the
discretised equations can be written in the form

ap®h =) " al 0Ly + abdL A 4+ b, (14)
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where the subscript P represents the current node, the subscript nb represents a neighbouring
node to P, the superscript ¢ represents the current time, At is the time step, the coefficient
al, at, and a% are found from the grid geometry and the current kinematics. To compute the
gradient of any quantity, say ¢, in a finite volume cell AV, it is taken to be constant, equal to

its average value in the cell. Thus
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where AS is the bounding surface to the cell, and n is the outward unit normal vector on AS.
The surface integral (line integral in two dimensions) is evaluated using interpolated values of
¢ between adjacent cells sharing the same boundary.



Numerical analysis

A cooling tower is a structure designed for the evaporative cooling of water by direct contact
with air. The geometry of the cooling tower considered in this analysis (Figure 1), is described
by using a general second-degree equation for its meridian as follows:

Az +2Brz? + CrR*+ 2Dz +2Er + F =0 (16)

in which r is the horizontal radius and z is the vertical coordinate along the axis of revolution.
Two different equations are used: one to describe the meridian above the throat and the other
to describe the meridian below the throat, with continuity of slope and curvature at the throat
level (Table 1).

The grid system in the calculating region consists of 57 x 30 grid points in the radial and
axial directions. A staggered mesh system is employed in the differential grid method in which
the velocity (u,,u,) is defined at the cell edge and the pressure p, the density p and the internal
energy e are at the center [4].

Boundary conditions

The boundary conditions corresponding to the case analysed in the geometry described by
the cooling tower shown in Figure 1 are at the inlet boundary:
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Coeff. Above throat level Below throat level
A -0.10667 -0.14350
B -0.2755x107° 0.3087x107°

et C 0.825 0.825

e R S e D 0.3108x1073  -0.2687x10~?
o | ‘ E -0.002619 0.7118x10~?
‘ ‘ F -13224.397 -13224.83
Figure 1: Geometry of cooling tower [m]. Table 1: Coefficients of equation (16).

Results and discussion

The numerical simulation was realised with the following parameters: boundary conditions,
v, = —8.0, v, = 0.0; initial conditions: v, = 6.0, v, = 0.0. Underrelaxations factors for the
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Figure 3: Streamlines

Figure 2: Velocity field

0.4. The results can be appreciated in Figure 2 and Figure

0.4, Bo

SIMPLE algorithm: £

3, which show the steady solution for the velocity field and the velocity streamlines respectively.

all of them calculted on a mesh of

field shows a sudden expansion unidirectional to the

outlet boundary, which can be better appreciated in Figure 3. The expectation of a pressure

?

Figure 4 shows the isobar plot of the model considered

57 x 30 grid points. The vector velocity

gradient near the center bottom is due to the pattern of the adiabatic boundary characterised

by a notable increment in its value.

Figure 4: Isobars.
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