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Summary: Eigenvalues and response on loadings of specified hime histories provide
principal information on dynamical properties and behaviour of rotors supported by
squeeze-film dampers or fluid-film bearings. In both cases the analysis starts from setting
up and solving the equation of motion. The hydraulical forces through which the layers of
lubricat act on the the rotor journals are determined fromthe oil pressure distribution in
the gap between the inner and outer rings of the damper or the bearing. A procedure
based on repeated linearization of fluid-film forces by means of their expansion into a
Taylor series in the neighbourhood of the current position and modification of a
Newmark method has been developed and tested. Inertia effects of the lubricant are
included in the calculations. The proposed method is marked for good numerical
stability.

1. INTRODUCTION

Rotors working in industrial enterprises are loaded by various time varying forces. To
decrease amplitudes of their vibration the shafts are supported by fluid-film bearings or squeeze-film
dampers. On the other hand nonlinear properties of these constraint elements can result into operating
conditions that are undesirable from the point of view of control or limit state of deformation which is
determined by the width of the gap between the discs and the stationary part. The observations show
that even a simple excitation can produce a chaotic or self-excited vibration that are marked for large
amplitudes. If one or more parameters of the rotor system are close to a stability limit a bifurcation can
occur and the motion tends to jump between different attractors.

An important instrument for investigation of behaviour of rotors is a computer modelling
method. The model systems are assumed to have the following properties : (i) the shaft is represented
by a beam-like body that is discretized into finite elements, (ii) the discs are thin and absolutely rigid,
(iti) inertia and gyroscopic effects of the shaft and of the discs are taken into account, (iv) material
damping of the shaft is viscous, other kinds of damping are considered to be linear, (v) the rotor is
coupled with the stationary part through rolling-element bearings with squeeze-film dampers or
through hydrodynamical bearings, (vi) the rotor rotates at constant angular speed and (vii) isloaded by
concentrated and distributed forces of general time histories.
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2. VELOCITY PROFILESAT SHORT DAMPERS AND BEARINGS NEGLECTING FLUID-INERTIA
FORCES

Neglecting inertia effects of the lubricant the pressure distribution in the gap between the inner
and outer rings of the squeeze-film damper or hydrodynamical bearing is described by the Reynolds
equation| 1]
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where
h=0-e¢.cosd (2)

p - pressure of the lubricant,

X - coordinate along the length of the damper or bearing,

R - radius of the damper or the bearing gap,

L - length of the damper or the bearing,

0 - difference between radii of the outer and inner rings of the damper or the bearing,

e - eccentricity,

h - width of the damper or the bearing gap,

n - dynamical viscosity of the lubricant,

Qg - angular speed of rotation of the outer ring of the damper or the bearing,
(dampers: Qg = 0rad.s’, bearings: Qg >0rad.s™).

Notation of angles ¢, y and 9 is evident from Fig.1.

For relatively short dampers and bearings (in axial
direction) the change of pressure in the circumferencial
direction is small in relation to the pressure gradient in axial
direction. Hence it is possible to neglect the first term in the
Reynolds equation
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By integrating (3) and taking into account the
boundary conditions

Fig.1 Scheme of the bearing p=0 for X= i% (4)
one obtains for the pressure function
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The velocity profilesin axial (w ) and circumferential (u) directions can be calculated from the
pressure gradients and equations expressing the force equilibrium of afluid element

u=%QB.R (7)



2
:3% - —:—2@2.60058+e(2y—£25).sin8] (8)

The velocity component v in radia direction ( Fig.1) is determined from u, w and from the
continuity equation

Y3 Y2 2

V=354—3— 2.ecosd +e(2y-Q )smﬁ] ——eQ;.sind (9)
h® 2h? 2h?

u,v,w - circumferential, radial, axial velocity components of the oil flow in the gap.

3. FLUIDINERTIA FORCESIN SHORT SQUEEZE-FILM DAMPERSAND BEARINGS

A classical assumption in squeeze-film dampers and hydrodynamical bearings theory whichis
supported by considerable experimental evidence [ 4], [ 5] is that the velocity profiles calculated
from the solution of the Reynolds equation are valid also in the presence of significant fluid-inertia
effects.

One approach to taking into account the fluid-film inertia forces starts from the Navier-Stokes
equation related to the direction of the prevailing flow ( at short dampers and bearings in the axial
direction)
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p - denstity of the lubricant,

t -time.

The inertia effects are incorporated into the pressure function by means of averaging the terms
proportional to the fluid density over the film thickness[ 2 ]. Then it holds for the pressure gradient

ow 0°w
_x_ hfpg_t Ras Vay TV axle "oy (1)

The pressure distribution in the gap between the inner and outer rings is obtained by
integration of (11) and by taking into account the boundary conditions (4). The performed
manipulations result in the expression for the pressure function
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A similar approach has been imployed by El-Shafei. He multiplies [ 3] the Navier-
Stokes equation ( 10) by the velocity component corresponding to the direction of prevailing



flow and integrates al its terms modified in this way across the film thickness. After some
operations the pressure function acquires the following form

1 o L0
-~ —-x’0A 14
P=0 g g™ (14)

A, = %.[e.(zy—QB).sinS + 2ecosﬁ] +

.%2(34\'/2 —27.QBV+%.Q§).sin28+34'e2.005219§+ (15)

+ 3:p eé(-27.Q; +68.y).sind.cosy +

h?’
+%.[(4'e—4.ey2 +46yQ, —€Q2).cos9 + (dey — 46Q, — 2600, +8e§).sin 9]

From the physical point of view El-Shafei’s approach is based on energy averaging of the
fluid flow in dominant direction.

4. CALCULATION OF THE RESPONSE AND EIGENVALUES OF THE ROTOR SYSTEM

Lateral vibration of rotors supported by rolling-element bearings with squeeze-film dampers or
by fluid-film bearings is described by the equation of motion

MX+(B+n, Ky +QG)X+(K +QK_ )x=f, +f, +f,(X,X,X) (16)
and by relationships for boundary conditions

Xpe =0 (17)
M, G, K - mass, gyroscopic, stiffness matrices of the rotor system,

B, K¢ - (‘external ) damping, circulation matrices of the rotor system,

K - stiffness matrix of the shaft,

fa, fv, fu - vectors of applied, constraint, hydraulical forces acting on the rotor system,

X, X, X - vectors of generalized displacements, vel ocities, accelerations of the rotor system,

Xgc, O - vector of boundary conditions, zero vector,

Q - angular speed of the rotor rotation,

Nv - coefficient of viscous damping (material of the shaft ).

The hydrodynamical bearings or squeeze-film dampers are considered in the model system by
means of nonlinear force couplings. Elements of vector fy represent forces through which the layers
of lubricant act on the rotor journal centres.

Realationships for the oil pressure distibution (5), (12) and (14) are vaid only in
uncavitated regions. If the pressure drops under a certain limit, the oil starts to libarate gases and to
boil. Then an acceptable assumption is that the pressure in such regions remains constant.

The mean value of the pressure profilein axial direction is given by the following relations
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Parameters A, for j = 1, 2, 3 are obtained from relationships (6 ), ( 13) and ( 15). Radial and
tangential components of the hydraulical forces are calculated by integration of the mean value of the
pressure over the circumference of the damper or bearing

2T

F. :L.R.J'pm(ﬁ).cosﬁ.dﬂ (21)
0

2m

F, :L.R.Ipm(ﬁ).sin{).cﬁ (22)
0

After transformation of (21) and ( 22) into the global frame of reference they are substituted
into appropriate elements of vector fy,.

The equation of motion (16) is nonlinear. One possibility of its solution is based on
modification of a Newmark method. The vector of hydraulical forces fy at time t+At is calculated by
means of its expansion into a Taylor series in the neighbourhood of time t neglecting terms of the
second and higher orders.

fH,t+At = fH,t + DK,t-(Xt+At _Xt) + DB,t'(XHAt _Xt) + DM,t'(XHAt _Xt) t.. (23)

Taking into account only the linear part of the Taylor series ( 23) and after performing some
mani pul ations the equation of motion related to the instant of time t+At has the form
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Solution of the equation of motion must satisfy the boundary conditions. Therefore equation
(24) istransformed to the form

A 2,t+At 'yt+A + Al,t+At 'yt+A + AO,HA’[ 'yt+A = bt+A ( 29 )

Matrices Azt » Artat , Aogar @nd vector by are obtained from the ones given by (30),
(31),(32) and ( 33) respectively by omitting their rows and columns corresponding to the degrees
of freedom for which the boundary conditions are prescribed.

A;,t+At =M _DM,t (30)
Al =B +N, Ky +Q.G -Dy, (31)
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0,t+At

ft+At = fA,t+At +fH,t - DM,t 'Xt - DB,t 'Xt - DK,t Xy~ Ao,t+At Xgc (33)
In addition the mentioned modification eliminates unknown values of the vector of constraint
forcesfy.

Advantage of the described procedure is that it avoids repeated solving a set of nonlinear
algebraic equations. On the other hand it requires to perform linearization of the vector of hydraulical
forces and modification of the coefficient matrices of the system at each integration step.

Calculation of eigenvalues of the rotor system starts from equation (29). The vector of
hydrodynamical forces is expanded into a Taylor series in the neighbourhood of the equilibrium
position and the right-hand side of ( 29) is set equal to zero.

Thetask results in solving a quadratic eigenvalue problem
det(N.A, +A.A, +A,)=0 (34)

The coefficient matrices in (34) are obtained from Aj ., Alua, Alua Given by

relationships (30), (31) and ( 32) by omitting their rows and columns corresponding to the degrees
of freedom to which the boundary conditions are imposed.

5. EXAMPLE

The mentioned approach to analysis of behaviour of rotors supported by squeeze-film dampers
or fluid-film bearings was tested by means of computer simulations.

The rotor of rotor system ROT21 consists of a shaft (SH) and of two discs (D1, D2)
attached to its overhung end ( Fig.2). The rotor is coupled with arigid foundation plate through two
rolling-element bearings with squeeze-film dampers and rotates at constant angular speed.

The shaft was loaded by concentrated forces of constant magnitude acting on it at the discs
locations in radia direction. In addition the system was excited by centrifugal forces caused by the
discs unbalances.

The task was to study influence of the dampers on dynamical properties and behaviour of the
system.

The shaft was represented by a beam-like body that was discretized into 5 finite elements.
Both dampers were considered as short. Pressure in cavitated regions was considered to be zero.

The response was calculated using the adapted Newmark method. Calculation of integrals
(21) and ( 22) was performed numerically by application of a Simpson’srule.

The principal results are summarized in the following figures. The analyses are mean : A -
rotor system with no dampers, B - determination of inertia effects of the lubricant through averaging
inertia terms in the Navier-Stokes equation and C - determination of inertia effects of the lubricant
through averaging the fluid flow energy in the prevailing direction.

Itisevident that presence of the dampers (i) changes spectrum of the natural frequencies of the
rotor system (Tab.1) and (ii) significantly decreases amplitudes of the forced vibration ( Fig.3).
Results obtained in variants B and C are close one to another.
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6. CONCLUSION

The modification of a Newmark method utilizing repeated expansion of the vector of
hydrodynamical forces into a Taylor series in the neighbourhood of the current position is marked for
good numerical stability and makes possible to apply reasonably long integration steps.

Investigation of behaviour of rotors supported by squeeze-film dampers or fluid-film bearings
is an important but also rather complicated technical problem. For its solution a computer modelling
method can be used. The computer simulations are valuable especidly if they are performed for
different operating or design parameters of the rotor system.
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