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VOLD-KALMAN ORDER TRACKING FILTRATION
AS A TOOL FOR MACHINE DIAGNOSTICS

Jiří TŮMA•••   

Summary: The main topic of the paper deals with diagnostics of rotating and reciprocating
machines based on RPM, noise and vibration measurements. Key words are the Vold-Kalman
order tracking filtering. An example of vibration measurements is taken from the diagnostics of
the machining center.

1. INTRODUCTION

The dynamic test of rotating machines is based on the noise and vibration measurements. The
base frequency of all of these exciting forces is related to the machine rotation frequency. An
extensive vibration is excited when the base frequency or its harmonics meet the structural resonance
frequency of machines. The machine is tested during steady-state rotation or run up / coast down.
Clear information about the origin of the extensive vibration cannot be given by a single frequency
spectrum but by a multispectrum recorded during variation of the machine RPM. It should be
mentioned that any driven unit does not rotate at a purely constant speed but its speed slowly varies
around an average value. Spectrum components of the diagnostic signal originate from simultaneously
amplitude and phase modulation of so called carrying harmonic components that correspond to the
excitation at a purely steady-state rotation. The amplitude modulation of harmonic signals arises from
the non-uniform periodic load while a phase modulation is there due to the non-uniform rotational
speed. Rotation speed variations at the fixed signal sampling frequency cause the smearing of the
dominating components in the frequency spectra.

An analysis of signals from machines running in cyclic fashion is preferred in terms of order
spectra rather than frequency spectra. The order spectra are evaluated using time records that are
measured in dimensionless revolutions rather than seconds and the corresponding FFT spectra are
measured in dimensionless orders rather than frequency. This technique is called order analysis or
tracking analysis, as the rotation frequency is being tracked and used for analysis. The resolution of
the order spectrum is equal to the reciprocal value of the revolution number per a record corresponding
to input data for the Fast Fourier Transform (FFT).

A lot of practical mechanical systems contain multiple shafts that may run coherently through
fixed transmissions, or partially related through belt slippage and control loops, or independently, as
for instance a cooling fan in an engine compartment. For coherently running shafts it is possible to use
the above mentioned order analysis technique. On the other hand, non-coherently running systems
with multiple orders decoupling close and crossing order can be extracted by the Vold-Kalman order
tracking. The standard methods based on FT enables only speed limited order tracking while the Vold-
Kalman order tracking filtering is without slew rate limitation.
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The fundamentals given in this paper are based on the theory described by [1,3]. The
evaluation of the frequency responses is an original contribution to the Vold order techniques. An
example of employing of the Vold-Kalman order tracking filtration deals with an analysis of the
horizontal machining center.

2. PRINCIPLES OF VOLD-KALMAN FILTERING � ALGORITHM OF THE FIRST GENERATION

A harmonic signal with continuous time, ( ) ( )tAtx ω= cos , is a solution of the second order
differential equation in which the first derivative of the time signal is missing. The harmonic
oscillations are neither amplified nor damped. If the time signal is sampled, ,...2,1,0, =∆= ntntn

where t∆  is the sampling time increment, the harmonic oscillations are a solution of the second order
difference equation with a characteristic equation having two complex conjugate roots which equal to
the following values of ( )tjz ∆ω=exp1  and ( )tjz ∆ω−=exp2 , where ω is an angular velocity. The
solution of the mentioned equation takes the form ( ) ( )nn zzCnx 21 += . A characteristic polynomial
corresponding to the characteristic equation can be written in the form ( )( )21 zzzz −−  that gives the
original difference equation

( ) ( ) ( ) ( ) 021cos2 =−+−∆ω− nxnxtnx , (1)
where the coefficient of the delayed sample ( )1−nx  can be designated by ( ) ( )tnc ∆ω= cos2 . The
equation (1) is a linear, frequency dependent constrain equation on the sine wave, and it is called the
structural equation of the Kalman filtration [1]. The solution of the equation (1) is based on the first
two samples, ( )1x  and ( )2x , and the angular velocity (angular frequency), ω.

Noise or vibration signal generated by a rotating machine consists of the sinusoids differing in
their frequencies and the signal is contaminated with background noise. The sinusoid frequency is an
integer or fractional multiple of the machine shaft rotational frequency that is called a fundamental
frequency. The sine wave can slightly change its amplitude and frequency over the time samples
involved in the equation (1). In order to express deviations from the true stationary sine wave, the
unknown non-homogeneity term, ( )nε , is incorporated on the right side of the mentioned equation

( ) ( ) ( ) ( ) ( )nnxnxncnx ε=−+−− 21 . (2)
Note that the number of samples in the equation (2) is equal to three, hence ( ) ( )1,2 −− nxnx

and ( )nx . The system of the structural equations containing all the samples ( ) ( )Nxx ,...,1  takes the
following form
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which can be rewritten in the matrix and vector form

εxA = (4)

The sum of the squares of all the unknown non-homogeneity terms can be expressed as a
scalar product

xAxAεε TT = , (5)

where a row vector Tε  is a transpose of the column vector ε .



The value of the instantaneous angular frequency, ω, which is a multiple of the machine
fundamental frequency, cannot be usually measured at each recorded sample. Tacho pulses, generated
once in a rotation of the shaft, give a reduced information on the instantaneous fundamental frequency.
Thus the Vold-Kalman order tracking filtration needs a very accurate estimation of the instantaneous
fundamental frequency. The methodology that has been chosen for this filtration in PULSE, the Brüel
& Kjær signal analyzer is based on fitting cubic splines in a squares sense.

Instead of observing the sampled sinusoidal signal ( )nx , samples ( )ny  are recorded. The
signal ( )ny  is combined from both the signals satisfying the structural equation (2) as well as random
noise and other sinusoidal components differing in the frequency with the sinusoidal signal ( )nx . The
random noise and other sinusoidal are combined into the signal ( )nη . Formally, it can be written as

( ) ( ) ( )nnxny η+= . (6)
The system of the data equations containing all the samples ( ) ( )Nxx ,...,1  similar to the system of the
structural equations takes the following form
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The system (7) can be expressed in the vector form

ηxy =− . (8)

The sum of the squares of the signal ( )nη  can be written in the form

( )( )xyxyηη −−= TTT . (9)

The equations (3) and (7) give a system of overdetermined equations for the unknown
waveform ( )nx  which can be solved using standard least square techniques such as normal equations
allowing very fast solutions algorithm. Both of the sums consisting of the square samples,
corresponding to the non-homogeneity term ( )nε  and other sinusoidal and background random noise

( )nη , must be minimized. To control relationship between the standard deviation of the non-
homogeneity term ( )nε  and the standard deviation of the mentioned signal ( )tη , the loss function is
combined into the form

ηηεε TT2rJ += . (9)

The choice of a large value for a weighting factor r  leads to the highly selective filtration in
frequency domain that takes a long time to converge in amplitude. In contrast, fast convergence with
low frequency resolution is achieved by choosing r  small.

The first derivative of the loss function (9) with respect to the vector x  gives a condition for
the minimum of this function called a normal equation.

( ) 022 =−+=
∂
∂ yxxAA

x
T2rJ . (10)

The solution of the equation (10) is given by the formula for the unknown waveform ( )nx

( ) yEAAx
1−

+= T2r . (11)



The banded square positive definite matrix EAA +T2r  consists of non-zero elements that are
arranged into 5 diagonals. Therefore, it is easy to invert it.

To test selectivity of the Vold-Kalman order filter, the 100-sample and 500-sample waveforms
with sampling frequency of 1 Hz are employed. The center frequency of both the filters is chosen

sf1.0 . The frequency response is inspected for the frequency ranging from sf05.0  to sf15.0 . The
weighting factor r  ranges from 1 to 1000. The frequency responses of the Vold Kalman order filter
for both the waveforms are shown in figure 1. The limit value of the weighting factor is equal to 100
for the 100-sample waveform. One can conclude that the largest number of the sample the better
selectivity of the Vold-Kalman order filter.

A chirp signal and the result of the Vold-Kalman order filtration in the form of the difference
between ( )ny  and ( )nx  is shown in figure 2.
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Fig. 1. Frequency response of the Vold-Kalman order tracking filter
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Fig. 2. 500-sample chirp signal and result of the Vold-Kalman order tracking filter

3. ALGORITHM OF THE SECOND GENERATION

The algorithm of the first generation gives the time signal ( ) ( )tAtx ω= cos  as a component of
the recorded signal ( )ty . The real time signal can be written as the sum of the products ( ) ( )ttA kk Θ ,
where k runs over all of the positive and negative multiples of the fundamental frequency



( ) ( ) ( )∑
+∞

−∞=
Θ=

k
kk ttAtx . (12)

The term ( )tAk  is a complex envelope and the term ( )tkΘ  is a function corresponding to the rotating
unit vector, called a phasor, in the complex plane. The phasor is lying on the unit circle and it is
defined by the following formula

( ) ( ) 





ττω=Θ ∫

t

k dkjt
0

exp , (13)

where the integral of frequency gives the angle traveled by the axis up to the current time. Note that
the terms ( )tAk  for the positive index +k and negative index �k are complex conjugate quantities,

( ) ( )tAtA kk
*=− .

The second-generation algorithm [3] results in the time series ( )nAk . The complex envelope
( )tAk  is the low frequency modulation of the carrier wave ( )tkΘ . Low frequency modulation causes

envelope smoothness. In other words envelope is locally approximated by a low order polynomial.
This condition can be expressed by the structural equation with the non-homogeneity term ( )nε

( ) ( )nnAk
s ε=∇ . (14)

Note that the difference operator of a given order s annihilates all polynomial of one order less. The
order of the difference equation (14) equals one, at the least. For instance, the value of s equaling to
one gives the following structural equation ( ) ( ) ( )nnAnA kk ε=−− 1 . The order of the difference
operator designates the order of the filter that is equal to the number of poles in the filter.

Data equation is given by the following formula

( ) ( ) ( ) ( )nnnAny
Kk

kk η=Θ− ∑
∈

, (15)

where the summation is for a desired subset of orders.

4. EXAMPLE OF EMPLOYING THE VOLD-KALMAN ORDER TRACKING FILTRATION

Employing the Vold-Kalman tracking filtering is demonstrated on analysis of the acceleration
signal that is measured on the spindle head of the horizontal-machining center (see figure 3). The
analytical instrumentation used for the Vold-Kalman tracking filtering was of the Brűel & Kjæer
origin and comprised the PULSE signal analyzer.

An optical trigger attached to the spindle gives the tacho pulses. Setting up and the zoom of
time signal are shown in Figure 4. The RPM value is evaluated from the time interval between two
consecutive impulses. The trigger level, hysteresis and slope are set up in the tacho setting property
page.

accelerometer

Fig. 3. Horizontal machining center



Fig. 4. Tacho pulses and tacho setting property page

Vibration is excited by the natural unbalance of the spindle. The RPM run-up ranges from 50
to 10000 RPM and it takes 18s. The sampling frequency of both the tacho and vibration signals is
chosen 8192 Hz that corresponds to the frequency span of 3200 Hz. Results are shown in figure 5, 6
and 7. Vibration time signal of the run-up and Vold-Kalman filter property page are shown in figure 5.

Fig. 5. Vibration time signal of the run-up and order setting property page

A short time Fourier transform of the acceleration signal is shown in figure 6. A time slice at
18.68s  shows that dominating orders of the spindle rotational speed are equal to the 0.402th, 0.781th,
1st, 2.450th and 3rd order of the rotational speed of the spindle. The quantities are entered as the orders
to be extracted on the order setting property page.



Fig. 6. A short time Fourier transform of the acceleration signal

The unbalance of a driving motor excites the 0.781th order. The unbalance or misalignment of
the spindle excites the 1st and 3rd orders. Faults in rolling-bearings probably excite the 0.402th and
2.450th orders.

Overlapped waveforms (spindle acceleration signal in Z direction) of the 0.402th, 0.781th, 1st,
2.450th and 3rd order of the rotational speed of the spindle extracted using a two-pole Vold-Kalman
filter with 10% bandwidth are shown in figure 7.
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5. CONCLUSION (CLOSING REMARKS, ACKNOWLEDGEMENT)
The paper gives an overview of Vold-Kalman order tracking filtration as an analytical tool for

the diagnostics of rotating and reciprocating machines. The main advantage of this analytical
technique consists in ability to track an order without slew rate limitations. The only speed limitation
is due to the filter response. Stepwise changes of the RPM and tacho signal drop-outs can be handled.
Decoupling of close and crossing orders is possible.

The only disadvantages are not real time processing, longer calculation time and some prior
knowledge of the signal required.
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