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Summary: The experiments with the impinging air jets are referred to. The attention is
paid to the comparison of the heat transfer efficiency for different nozzles and experimental
geometries. The comparison by means of free convection is discussed and explicit formulas
are introduced.

Key words: impinging jets, heat transfer, free convection

1 INTRODUCTION

As was referred to at IM2000 [1], a series of experiments concerning impact streaming of air
has been done at TU Chemnitz. The purpose of these experiments has been to compare the
heat transfer efficiency for various nozzles and geometrical arrangements. In the experiments,
local temperatures on a homogeneously heated (heat flux intensity q), perpendicularly to the air
stream (temperature of air equal to the ambient temperature to) positioned plate was measured.
In this way, the results of the experimental effort are the sets of the radial temperature distri-
butions T(r) parameterized by the geometrical parameters and the intensity of streaming. The
standard way of the treatment of the experiments of this type is the calculation of an effective
heat transfer coefficients α as a mean of local heat transfer coefficient α(r) = q/T (r). This
approach is misleading in many cases because of singular behavior of α near T = 0. That is
why, the ’cooling function’ M was introduced in [1] as

M =
∫ Tf − T (r)

Tf
dS, (1)

where Tf is the temperature of the plate heated by q and cooled only by free convection (all tem-
peratures designated by capital T are related to to). To make the calculation of M manageable,
a suitable mathematical description of Tf = Tf (q) relation is necessary.

2 DESCRIPTION OF THE FREE CONVECTION

Free convection (FC) from horizontal surfaces has important applications in industry. This fact
explains a pertinent interest in this subject over last more then fifty years - [2], [3], [4], [5] etc.
The nature of FC makes a theoretic approach less fruitful, that is why the subject is treated
prevalently in an experimental way.

The results of the experimental investigation of FC are usually introduced in the form of the
correlation between Nusselt (Nu) and Rayleigh (Ra) number

Nu = C ·Ran, (2)
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‡S. Göpert Technische Thermodyn., TU Chemnitz, D-09107 Chemnitz, stefan.goeppert@mb3.tu-chemnitz.de
§H. Herwig, Technische Termodyn., TU Hamburg-Harburg, D-21073 Hamburg, h.herwig@tu-harburg.de



where the C and n are results of the correlation and Ra is the product of the Grasshof and
Prandtl numbers, Ra = Gr · Pr,

Ra =
gβTfL3

aν
, (3)

where g is gravitational acceleration, β coefficient of thermal expansion, L characteristic linear
dimension of heated area, a thermal diffusivity, and ν kinematic viscosity. Nu is defined as

Nu =
αL
k

. (4)

In this connection, the αf is to be understood as a short form for q/Tf , which are the quantities
actually measured in experiment.

On the other hand, for the practical purposes, the FC is usually described by means of the
relation

q = αf · Tf (5)

(Newton’s cooling law), where the αf is understood as a material characteristic for the ambient
medium.

The experimental experience expressed in the eq. (2) can be transformed into the form of
eq. (5): The substitution of the definitions of Nu, Ra, and Tf from the eq. (5) into the eq. (2)
makes from it an algebraic equation for αf . By means of its solution, the relation between T
and q can be written as

Tf =
G(L, n)
F (C, n)

· q
1

n+1 , (6)

where

F (C, n) = (Ck)
1

n+1 ·
(

gβ
ν.a

) n
n+1

, (7)

and
G(C, n) = L

1−3n
n+1 . (8)

The right hand side of eq. (6) is factorized into three parts one of which depends only on material
constants of the medium (F ) and the second one is purely geometrical (G).

A standard set of values C and n is after [2], [3], and [4] based on [5] as follows: C = .54 and
n = 1/4 for the laminar (Gr < 2.107) and C = .14 and n = 1/3 for the turbulent (Gr > 2.107)
case respectively. For the turbulent case, which can be regarded as the ’usual’ one, the exponent
of the geometrical factor is zero. It makes the process independent of the area concerned - an
implicit assumption of the eq. (5). The relation between q and T has now the form

Tf =
q3/4

Fa(C, 1/3)
. (9)

This equation summarizes the experimental experience for the FC in the turbulent case, i.e. the
content of the eq. (2), in an explicit form suitable for direct applications.

3 CONCLUSION

The equations (1) together with (9) introduce the ’cooling function’ M in such a way, that
1) M = 0, if the jet doesn’t work,
2) M has no singularities for T (r) = 0,
3) if α1(r) and α2(r) ar well defined for all r, then (α1 < α2) ⇒ (M1 < M2)
4) M corresponds to an intuitive idea of a ’strength of cooling’.
The ’cooling function’ M defined in this way can be useful as a criterium for comparison of the
efficiency of the heat transfer of various impinging jets, therefore.
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[1] Pražák J., Mocikat. H., Goeppert S., Herwig H.: Comparison of heat transfer efficiency of
various impinging jets, Proceedings of International Conference Engineering Mechanics 2000,
May 15-18 2000, Svratka, Czech Republic

[2] Yousef W. W., Tarasuk J. D., and McKeen W. J.: Free convection heat transfer from
upward-facing isothermal horizontal surfaces, J Heat Transf 104(1982)439

[3] Kitamura K. and Kimura F.: Heat transfer and fluid flow of natural convection adjacent to
upward-facing horizontal plates, Int J Heat Mass Transfer 38(1995)3149

[4] Burmeister L. C.: Convective Heat Transfer, John Willey & Sons Inc., NY 1995

[5] Fishenden, M. and Saunders, O. A.: An Introduction to Heat Transfer, Clarendon Press,
Oxford 1957


