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MOBILE ROBOT STRUCTURAL OPTIMIZATION
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Summary: Robot structural main differences. Location of sensors and robot geometry
influences. Optimization demands and indexes for increasing of performance routine and
robot controlled behavior. Robot stochastic representation. Observation equations
expressed for scene sensors measurement geomelry. Accuracy characteristics of
undercarriage robot configuration. Simulation modeling and trajectory testing results.
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1. INTRODUCTION

Current robots perform now a broad scope of tasks and include all branches of technology and
science. They will need to develop an intelligent generation level like smart autonomous systems with
asked capabilities of perception, cognition and mobility. They serve for realization of goal intelligent
tasks, for precision or hazardous tasks, to increase the efficiency of performing routine. Therefore they
operate in apriori defined environment under perturbation influences and measurement noises. A
behavior of such individual robots or group of robots is defined by the space and goal of operation,
mechanical structure and mode of control where robot control processes are mobility, inner state and
surroundings perception and goal interaction.

The significant current robot design problem is to determine localization parameters, precise
path tracking, and collision avoidance for robot motion in more or less structured and featureless
environment. Dynamic robot model is necessary to use expressed for varied design, for which purpose
there is introduced method of structural performance analysis. A large number of possible control
problems can be formulated for computing optimal robot trajectories. The robot localization problem
is treated as nonlinear stochastic phenomena. This is realistic and computational attractive. The robot
motion process is linearized, accuracy performance is evaluated with standard covariance analyses,
and optimization is accomplished with linear-quadratic-Gaussian control theory. And moreover it is
assumed here that our robot is constrained, nonholonomic mechanical system. For the control design a
mathematical model describing robot lateral and longitudinal dynamic, neglecting roll and pitch angles
is well suited. But such realities exist only seldom due to changes in the surface texture, wheel slips,
wheel lining deformation, etc. The inequality constrains on the path are numerous.
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With references to these realities we place main emphasis to elaborate mathematical model
(MM) of the robotic system enabling to determine the control response loaded by minimum
localization error. The prepared model must be also flexible enough for considering alternate
undercarriage dynamics and measurement system combination.

2. METHOD FOR PERFORMANCE ANALYSIS AND OPTIMAL DESIGN OF ROBOT LOCALIZATION
PROCESSES

Problems studied is the estimating the robot states described like stochastic system generating
an optimal control response, where control inputs may be determined directly and measurement
outputs are noisy loaded. Solution of the optimization problem is given in terms of state differential
equation formulation. Task mathematical formalization is done in the space of nonlinear state values
distorted by nonlinearities and random influences. Instead of state vector quadratic form there is used
control response quadratic form giving more complete information.

2.1. Nonlinear dynamic model for robot motion

Consider a general rigid body notion of a robot characterised by its state, control and
disturbance inputs of the motion

x=f(xy.m). (1)

This model is formulated in nonlinear state space description of important dynamic variables.
Generally the standard state components defined for nonlinear equations of motion (also used for
states perturbation equations of motion) are of various physical quantities. They are expressed like

subvectors for linear acceleration X, [m s?] and velocity X, [m s, angular acceleration X, [rad 57

and velocity X, [rad s, translation position X, [m] and orientation X, [rad], initial position X; [m]
. . . r . .
and orientation X, [rad], robot control elements deflection X, = [ B.a;, ap] and effective drives

"
input vector y,, = [ Vgo ya} . Then basic state quantities that may be measured are expressed in the
vector form as follows:
. . T
xX= I:X],X],X27X2,X3,X4,X5,X6,X§:|
, 2)
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Robot motion is influenced by nominal and random control inputs from a vehicle surroundings

. . . T,
and traction surface. The disturbance input m = [’q] , ‘12] is defined as known uncorrelated zero-mean

Gaussian white-noise random process for which the expected values are
M {n, (6) mf (1)} =W, (1)8(1—7). 3)
M {n, (1) ny (1)} = W, (1)3 (- 7). (4)

where Dirac function is &(r—7)=0 for r#7 J-é'(t —7)dt=1 and W, (1) are symmetric

positive definite matrix.

The random response of the robot will be of primary interest. The motion of the undercarriage
on a traction surface or on a rough terrain will induce stochastic vibrations, with important noise
influences on multisensoric state measurements.



Linearized equations in discret form used for robot representation would become triplet matrix
equations of dynamics, observation and response, where

x(k+1)=A(k)x(k)+B,(k)u(k)+B;(k)n, (k),
m(k)=H, (k)x(k)+B, (k)n, (k). (5)
r(k)=H,(k)x(k)+D(k)u(k),

where couple of matrices (A, Bl) has to be controllable and (A, Hz) observable,u is a control-
input vector, m vector of measuring, r vector of controlled responses.

The described trajectory control process is a nonlinear stochastic phenomenon. To analyze the
nonlinear equations, they were linearized about the nominal path, which corresponds to programmed
trajectory passing through the sequence of nodal points.

The solution of the motion optimization problem corresponding to continuous time — varying
processes was given first for completness. Then the discretized model and its solution are developed.
The algorithm utilizes linearization of equations about the current best estimate of the state to produce
minimum near square estimates of the state.

2.2. Measurement system model

Perception of states of the robot and it surroundings by means of board sensors depends also
upon where and how the sensors are mounted with respect to the robot body axes (i.e. robot
geometry). Dynamics associated with sensors — usually of the 2nd order may be important too.

The observation equation for each sensor is required to determine the robot localization
estimates and accuracy. There were developed a geometric model for the overall measurement system
incorporated laser, video camera, position gyroscope, ultrasonic range sensors and proximity sensors.

The observation equations for a board video camera and scanning laser frequently used for the
control of mobile robots and mounted on the vehicle board are of the form introduced on Fig. 1 and 2.
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Fig. 1: Video camera geometry.



Where y,, ©, are laser ray azimuth/elevation
Euler angles; x,, y,, z, are components of a

vector 7; .

For a robot velocity measurement will be
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Fig. 2: Laser measurement geometry.

There is necessary to consider the time for an image processing and the time instant for video
sensing. This arising lag separates the instant at which an image is acquired from the instant at which

it is processed and when m, can be introduced into the estimates. It is apriori known usually
programmed time /,, elapsed between trajectory crossing nodal points and Af, is a time delay of a
sensing system

t,=ket, —At,, St =n,6x(t,), )

pr

where Ot, is a sensing time error. The observations that are used to update the robot localization have

to be transitioned from the value at which the image was reached to the value at which the image is
actually identified. Here the state transition matrix may be used in the algorithm to adjust for this
delay.

2.3. Performance measure for optimal control design

The purpose of the further designed algorithm is to find the controller gain such that it will
minimize the cost of the control process. That is a searching input control vector determining extreme
of optimization criterion J. It is possible to find it in the form of linear control functional of the past

and measured outputs m (t) , Where
u(t)=L[tm(0,1)], (10)
that minimizes computational criterion for terminal and steady-states system behavior

J=g[x(rs)]+T];L[x(t),u(t):|dt, (11)

or by means of more emergent discrete form

J =tr {Q(N)S(N)+V(N)R(N)+§T[Q(k)s(k)+V(k)R(k)]}, (12)



where Q(k), V(k) are known weighting matrices of the process perturbation n, (t) and the
measurement noise 1, (t), assumed to be symmetric and nonnegative definite for all 7€ [O,T ];

R (k) control process response vector, S (k) response covariance vector.

Different performance indexes were analyzed for time varying and steady-state versions of
robotics system descriptions depending on the basic constraint configuration only, i.e. on signals
available for measurement and on control inputs available for motions. The advisible one should be

with the terminal cost, penalizing errors at the nominal nodal time 7,,,

J, =P+ _[w tr{uTRu} dt, (13)

0

and for steady-state version

J; =P s+ {RU}, (14)

where a measure of localization performance P s is a half probability area and an expectation process

control vector U =M {uuT} .

The consequence is in the possible designing a feedback control system by using these
penalties on the state and control variables. The optimization problem considered here involves direct
minimization of probable radial deviation centered in the mean of trajectory nodal points. The
developed robot controller is then in the form of an optimal controller consisting of an optimal

feedback gains and optimal estimation (17). It produces minimizing of the localization measure (P, ;)
at the trajectory nodal points.

The localization covariance and circular error probable are therefore used as a measure of
robot trajectory performance, where for normal distributions with small cross correlations, the area of
this circle can be closely approximated in terms of localization covariance matrix. Therefore the
controller optimization is further reduced to optimization with terminal time performance index, in

which the state deviations at the nominal nodal time are penalized by a weighting matrix. That matrix
depends upon the nominal trajectory sensitivities.

Minimization of control quality index J can be separated into deterministic respectively
stochastic problems. The solution of these two problems can be combined to form optimal controller
with the following consequences of quantities separation and two stage synthesis:

1. atask separation with decomposition of state, response and measuring vectors is expressed like
X=X+X,r=r+r,m=m+m’, (15)

where additive parts determine mean (nominal) and deviation quantities from the mean. Therefore J
minimization can be separated into control of the mean response and the control of the response
deviation from the mean (J =J +J");

2. two stage synthesis of nominal and perturbation dynamics of nonlinear robotic system with

possible results combination. The optimum control is the sum of deterministic and stochastic
solutions

u(k)=wu, (k)+ug (k). (16)

The optimal control law created by optimal mean and stochastic control laws with respecting
Riccati backward and forward equations for deterministic K, (k) and stochastic (estimator) K, (k)

gains is of the form



u(k) =K, (k)& (k)+| K, (k)-K, (k) ]x(k). (17)

where f((k) is a conditional state expectation vector. This method is believed to yield safe results for

different robotic systems.

The optimal estimate of the state quantities vector and optimal regulator introduce the
designed procedure between Kalman algorithms (H,) of the predictor/corrector type where the
computation has to be realized recursively.

If the robotic system dynamics is stationary and constant gains are used, very substantial
savings can be achieved by directly computing steady—state of covariance and Riccati equations,
where the gains solution are dual.

2.4. Simulation results

The structural optimization task was solved for tricycle
configuration of robot equipped with active and passive scene sensors
(laser, video camera) and electric DC drives. Figures bellow illustrates
a test path (Fig. 3) which was experimentally determined (Fig. 4)
using mentioned simulation. Perceptions are possible to determine
either for time or position dependent variables.

The asked behavior and accuracy for individual and multiple
running system is worsened by different outer influences, e.g. by
initial distinct conditions for motion, by rolling surface texture
changes, by wheel slipping and sliding, by types deformations, etc.
For experimental robot, estimation algorithm was used that serves

Fig. 3: AMR test path.
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Fig. 4: AMR simulation trajectories; Sy = [-1,1,3/4x]; G =[0,0,0].

to provide appropriate weights, influences on robot localization accuracy, mainly on its terminal
localization. Therefore some inner and outer state measurements have been adopted to deminish
localization errors when imperfect tracking arises.

The accuracy evaluation is given by error covariance matrix elements and error estimations
computed by the algorithms above introduced. Diagonal elements of the error covariance matrix
represent the variances of the estimation errors of the robot states and responses, the position and
velocities standard deviations, Fig. 5, 7, 8. Error position estimation standard deviation courses are on
Fig. 6.
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Experimental results show that produced robot state
estimates are physically acceptable and they provide a good
indication and prediction of the state estimation trends.
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Fig. 6: Position estimation error standard deviations.

Only a part of results is presented here. A lot of
further results were reached for robot trajectories and its
precision using simulation experiments. These results are
important in the phase of robot structure preparation mainly
with respect to an environment determination.
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Fig. 5: State response position vector
elements standard deviations.
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3. CONCLUSION AND RECOMENDATION

A powerful technique for the analysis and design of precision robot localization process is
designed. The technique employs nonlinear modeling, linearization, multisensoric scene perception,
stochastic and quadratics. The stochastic formulatio of the robot positioning problem is meaningful
and tractable. It incorporates into the design the stochastic nature of the incident influences, robot
dynamics and finite — time nature of position control problem. It handles with high order system
descriptions, arbitrary control points, arbitrary sensors arrangement and noise levels.

The formulation of robot structural optimization method defines an optimal controller, and it
provides a criterion for measuring the quality of such control, produces and minimizes the error
probable of the robot localization. Optimal time — varying as well as time — invariant gains can be
evaluated for various kinematics (undercarriage geometry), control and measurement points. It
develops position covariance matrix using overall system model.

Results adequacy analysis of nonstationary and stationary robot dynamics, with supposition of
complete but inaccurate robot state measurements in laboratory application areas, does not prove the
important differences. For the robotic system design that is determined for guiding and navigating in
indoor surroundings there is convenient to use optimal controller with constant gain matrix.
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