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INFLUENCE OF PERIODICALLY CHANGING PARAMETER
OF GEAR MESH TO DYNAMIC BEHAVIOUR AND
STABILITY OF CAR GEARBOX

Jan DUPAL, Toma§ KURUC®

Summary: The paper deals with a way of mathematical simulation of dynamic behaviour
of car gear box model. For mathematical model assembling of rotors, differential and
gearbox the 1D finite elements, rigid and shell finite elements are used respectively. The
problems of dynamic stability are solved by means of Floquet's theory.

This paper was written as a result of research project MSM 235200003

1. INTRODUCTION

A car gearbox can be modelled as a system consisting of several subsystems such as two rotors with
speed gear wheels, differential and gearbox. These isolated subsystems can be represented by linear
mathematical model with constant mass, gyroscopictdamping and stiffness matrices. For whole
assembled mathematical model a modal synthesis method [1] can be used respecting non-linear or
time dependent couplings connecting individual linear subsystems. The goal of this paper is to show a
way of modelling of car gearbox containing the time dependent linear couplings in gear meshes.

2. COMPONENTS OF PHYSICAL MODEL
A scheme of a car gearbox part is depicted in fig. 1
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— The gearbox
components can be modelled by three groups of elements:
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a) rotors — 1D finite rotor elements, rigid wheels, massless springs and dampers (software of
Dept. of Mech.)

b) differential — combination of rigid body and flexible rotor elements (software of Dept. of
Mech.)

¢) gearbox — shell and 3D elements (FEM professional software ANSYS)

Corresponding mathematical model has a form
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are mass, damping+gyroscopic and stiffness matrices of each other isolated subsystems
respectively. B, (t ) =B, + B(t ), K. (t ) =K, + K(t ) are time dependent damping and
stiffness coupling matrices respectively.

Having performed a modal analysis of the individual isolated subsystems respecting Kelvin-
Voigth damping [2] we can rewrite (1) into form
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where V and /\ are modal and spectral matrices of the each other isolated subsystems
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where number of columns of VI R"™" is equal to sum of the respected eigenvectors of

individual subsystems. [ is diagonal matrix because of proportionality. Having added a
trivial identity

x()-x()=0 (5)

to (3) we can rewrite both equation into compact form

Nu(r)-P( () =1(t) (©6)
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Eq. (6) can be further rearranged into form

u(t)=A( () +o() )

where
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Matrix A(l‘ ) OR>™*" is time periodic and has a period 7 . For stability recognition we use
Floquet’s theory. It means to solve homogeneous solution of (10)

u(t)=A()u() (1)

with independent initial conditions. Let us suppose the existence of 21 linearly independent
solutions (fundamental set of solutions) Xl.(t ), i=1,2,....2m. A fundamental matrix
solution can be introduced in the form of:

U()=[u,()u,()..... u,, (). (12)

which satisfies a condition

U(r)=A@)u(r) (13)

Time variable f can be replaced by T =¢ + T and (13) has a form

=A{ -T)U=A(T)U, (14)
dt
because of periodicity of A(t ) Hence if
U(+7)=U()z, zOR™™ (15)
If initial fundamental matrix has a form
U(0)=1, (16)

where ITOR*”*" is identity matrix, then

Zz=u(T) (17)



is so called monodromy matrix, whose eigenvalues decide about stability of the system. If all
eigenvalues lie in unit circle in Gauss plane, the system is stable otherwise the system is
unstable.

Proof:

Having passed Jordan canonical transformation of Z.
P'ZP =1, (18)

where P = [p1 sPas--sPy m] is right eigenvector matrix of the Z. and J is Jordan’s matrix
we can use a canonical transformation of the fundamental matrix

X()=v()p. (19)
From (19) follows

X(+T)=V(+T)P" (20)
and the inverse relation

V(e +T7)=X(+T)P. @1)
Respecting (19) relation (15) can be rewritten as

X(+T)=X(t)z=V()PZ. (22)
Substituting (22) to (21) we can write

V(+T)=v()P'ZP =V (). (23)

In case J is diagonal matrix containing eigenvalues of monodromy matrix A ; on the diagonal

we can write relation for modal coordinates V,in N - multiple of period T in the form

v,(t+7)=Av,@t) v,[t+NT)=A"v.(¢) (24)
From the last relation follows the condition if |/\l.| <1, system is stable because
]lvim v, (t +NT)=}/im Alv.(t)=0 (25)
and vice versa. In case J is nondiagonal for example
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Vl.(t+NT)=/\fVVl.(t) for i #3 (27)

and



v, (t +NT)=Iix\g}\f'f'lvz(t)+/\§vv3(t) for i =3 (28)
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In both cases if ‘Al‘ <1, the system is stable. The proof can be performed for larger Jordan’s

cell in the similar way.

3. NUMERICAL VERIFICATION

Let us find out the angular speed unstable region of simple exhibition system depicted in fig. 2

Fig. 2

Let suppose the upper driving
shaft has angular speed (U, and

Z is the driving wheel number of teeth. The angular speed of periodical change of tooth
stiffness and corresponding period can be obtained in form

2 _ 2m
w=zw, I=—=—-. (29)
W zw,
The first ten eigenfrequencies of the system with central stiftness of teeth are as follows
I 1 2 3 4 5
Q,|rad /s.10* 0 0.0728 | 0.0801 | 0.1613 | 0.1737
i 6 7 8 9 10
Q.|rad/s.10* 0.3504 0.3969 0.7847 0.8593 1.8226

The most sensitive eigenfrequency to the tooth stiffness modulation is Qg- Let us change

modulation frequency in the region (v [] <7800,7900> [rad / S] .

Corresponding region of revolutions is

n[0(3724.2,3592.3)[rev/min), 30w

p=Le g0 =209 (30)
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The measure of instability dependence (modulus of maximal eigenvalue of monodromy
matrix) on @ and proportional damping coefficient (B = oM + K, (a=0))is
depicted in fig. 3
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This academic example shows that the parametric instability can occur from the result of
small damping and high stiffness modulation (50%). However maximal modulation of real
gearboxes is about 15%. Simulation of dynamic behaviour of real car gearbox was performed
but it is not allowed to publish any results.

4. CONCLUSION

The calculations of real car gearboxes proved that tooth stiffness time periodicity can be
neglected. Taking a central tooth stiffness into account we can achieve a very correct results in
case of low modulation .
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